
Build Linux kernel with Open64

Qing Zhu1, Tao Wang2, Gang Yu1, Kun Ling2, Jian-xin Lai1
1Unix System Lab, Hewlett-Packard Company

2 State Key Laboratory of Computer Architecture, Institute of Computing Technology
1{qing.zhu2, yu.gang, jianxin.lai}@hp.com, 2{wangtao2010, lingkun}@ict.ac.cn

Abstract
Open64 is an open source, optimizing compiler. The goal of the
compiler is to be an alternative back-end of GCC. To improve
Open64’s code quality, enhance GCC-compatibility and attrac-
t more users to the Open64 community, it is important to build
significant applications like Linux kernel with Open64. This paper
describes the work of building and running up Linux kernel with
Open64. As an experience report, the general build, triage approach
and tackling method for commonly issues on building kernel with
non-gnu are discussed. Now, the officially maintained open64.net
trunk on x8664 target and the Loongcc[1] branch on MIPS64 target
have all successfully built up and run the Linux kernel.

Keywords Open64, Linux kernel, Loongcc, X86-64, MIPS-64,
QEMU, BOOT

1. Introduction
Open64 is an open source, optimizing compiler. It supports For-
tran 90/95 and C/C++, as well as the shared memory programming
model OpenMP. The C and C++ front ends are based on GNU
C compiler; the Fortran90/95 front end is the SGI Pro64 (Cray)
Fortran front end. The GNU Compiler Collection or GCC (for-
merly GNU C Compiler) is an open source compiler for C/C++,
Fortran77, Ada and Java. Compared to GCC, Open64 features
advanced interprocedural optimizations, loop nest optimizations,
global scalar optimizations, and code generation with advanced
global register allocation and software pipelining, and designed to
be a high performance compiler. However, GCC is the de-facto in-
dustry standard compiler, it is much more popular than Open64,
and most of the GNU and open source software use GCC as the
default compiler. To improve the quality and GCC-compatibility of
Open64, one urgent task for Open64 is to build and run well-known
prominent applications.

Linux kernel[5] is an operating system kernel used by the Linux
family of Unix-like operating systems. It is one of the most promi-
nent and complex applications in open source software. It’s well-
known the Linux kernel relies on the GCC-extensions heavily. To
our knowledge, besides GCC, only Intel C/C++ Compiler can build
an earlier kernel version[10, 11] around 2006. Recently, Clang [12]
can compile and boot up the Linux kernel with limited functionali-
ty.

This paper describes the work of building and running Linux
kernel as the target application for Open64. We have at least three
goals:

• Improve Open64 code quality and GCC-compatibility by fixing
the bugs found in compiling and running the kernel.

• Attract more potential users to Open64 community by showing
Open64’s quality and GNU-compatibility. We choose X8664
and mips64 platform as kernel building targets, since these two

architectures are principal and popular in IT industry, proving
the success on these two platforms will impress more people on
Open64.

• Provide a good research platform to improve the kernel’s per-
formance by advanced optimizations. Especially, to enable I-
PA/IPO (Inter-Procedure Analysis and Optimization) on kernel
build, show how much performance improvement that IPA/IPO
will give us on standard system software like operating system
kernel.

In this paper, we make a summary of general practices in ker-
nel building process on different architectures. These approaches
and experience may help other targets to conduct kernel building
and build other Open64 support platforms effectively. The paper is
intended to contribute the general approaches and experiences on
building kernel-like system software using a non-GNU compiler
like Open64. It is organized as follows: section 2 will introduce the
steps to build an boot Linux kernel, we will show the detailed triag-
ing/debugging environment information and our current achieve-
ment. Then, section 3 will discuss the issues on build and run the
kernel using Open64. We also discuss our understandings and tack-
ling methods for these issues. Finally, we make the summary on our
work in section 4 and also discuss possible future work continually
enhancing Open64 on system softwares.

2. Steps to Build and Boot Linux Kernel with
Open64

This section describes the general steps to build and boot kernel,
including how to configure, Open64 option control, boot tool, and
the general triage methods of build and boot issues.

2.1 Configure
The configuration method is as the usual way that we configure
for kernel. There are a lot of configuration methods: menucon-
fig(menu based), xconfig(QT based), gconfig(GTK based),etc. No
matter which method to choose, the config info is finally written
to ".config" file, we can easily change the value to "y"(built in to
kernel),"m"(built as module) or do not set it.

Since there are so many configuration values, it is hard for us
to make sure on each value, and also we don’t want to miss the
chances to compile more modules and drivers using Open64. We
choose the default configurations for X8664 and MIPS, i.e, "make
x86_64_defconfig" for X8664 and malta motherboard default con-
fig for MIPS.

2.2 Build
Build is also quite simple, just types "make -jN"(Where N is the
number of jobs allow at one time). But before actually build, we
have to solve the option control issue.

1

For the historical reasons, Linux kernel is quite gcc-oriented. In
order to successfully build up the kernel by non-gnu compilers, it
is necessary to collect the kernel used options and filter out those
specific to gcc or extremely unportable. At the same time it is also
necessary to add some tuning options for kernel-like big systems
code bases.

Dongyuan’s team from Tsinghua University had already made
some initial efforts on the options selecting and pushing by a script.
This work was committed at 2010 around for kernel 2.6.27 on
IA32 target. Although a little out-dated, it still provides us an
initial solution to control the options and filter out those undesired
warnings or fake errors.

For general approach, the options are divided into 3 categories:

1) Non-gcc options that need to be added for kernel building: s-
ince the kernel is quite a big code-base and intensively using
some skilled (maybe quite gnu oriented) and matured coding
patterns. It needs some special treats for kernel building. Lucki-
ly, due to Open64’s good compatibility for various code-bases
and high gcc compatible design goals, not too many option-
s have to be pushed. Only 4 options added to the build. They
are "-OPT:swap=off", "-OPT:olimit=0", "-WOPT:warn_unit=0"
and "-Wno-used". Especially, "-OPT:olimit=0" is pushed be-
cause the source code size is somehow exceeding the Open64’s
default optimizing capacities. We enable this with the risk of re-
sources exhausting, but luckily on the latest machines with big
memories, we successfully build up kernel without compiler in-
ternal resource errors.

2) Options that are gcc specific, not meaningful on non-gnu com-
pilers or extra undesired warnings: We choose to ignore these
options. Gcc special options are mainly stack operations and
checks, special x86 handling, compilation controls. Due to d-
ifferent stack usage and x86 porting, we disable all these on
Open64 building. Gcc’s "-Wall" warning is frontend supported,
however, it makes the compilation too much undesired warn-
ings, we also choose to disable it.

3) Options that are supported and meaningful to non-gnu compil-
ers: we choose to accept these options and direct the compiler
do kernel hackers’ intensions.

On the Loongcc’s building effort, we extend the build script to
enable Option Tracking and Complete Failure Reporting. Option
Tracking records the compiling command line once Open64 fails
to compile a file. Meanwhile, Complete Failure Reporting takes
measures to make Loongcc continue to compile the next file, so that
all files can be built once by a single make. The critical mechanism
of Complete Failure Reporting is based on a well-known fact that
Gcc and Open64 are ABI-compatible, their object files can be
linked seamlessly into one executable. Thus, once Loongcc fails
to compile a file, Gcc will be invoked to compile the same file
to get corresponding object. In this way, no changes need to be
made to Linux kernel original Building system, with which we are
unfamiliar. Finally, the report will be generated and inform us how
many files have failed with specific command line options. This
report not only provides an overview of the compiling process, but
also make it possible to fix multiple bugs at the same time, thus
quicken the pace of bug-fixing with team-work’s strength.

2.3 Boot
We choose simulator QEMU [3] to boot the kernel. QEMU is a pro-
cessor emulator that relies on dynamic binary translation to achieve
a reasonable speed while being easy to port on new host CPU ar-
chitectures. It can save and restore the state of the virtual machine
with all programs running. It supports the emulation of various ar-
chitectures, including IA-32 (x86) PCs, x86-64 PCs, MIPS R4000,

etc. QEMU has a built in gdb, which is convenient for debugging.
Choosing virtual machine(QEMU) instead of real machine has fol-
lowing advantages:

1) Low cost on access and deployment. If we boot kernel on real
machines, we need to reboot the machine, and once the kernel
corrupts, it’s inconvenient to get the failed log and hard to find
the root cause. Open64 built kernel must have a lot of problems
while boot from the beginning, it is more wise to choose the
virtual machines.

2) QEMU provides real machine simulations

3) Full debug support, QEMU supports snap-shots of boot process,
stack dump when fail, and remote debug support.

For X8664 target, we use "qemu-system-x86_64" command to
invoke QEMU while using "qemu-system-mips64el" for MIPS64.

2.4 Triage/debug method
When kernel fails at build or runtime, we have to figure out a
common method to triage and debug. Debugging kernel runtime
problems is a black art. It is well-known that Kernel debugging
is hard. Besides the complexity of operating systems, unlike user-
level programming, establishing a debugging environment isn’t as
simple as point-and-click. This paper introduces an environment to
debug kernel and some debugging techniques. We also designed
and implemented tiny tools for automatic triaging both build and
runtime failures. These tools help us to find the root cause quickly.

2.4.1 Build issues
Build failures are often easy to triage. With the help of Option
Tracking and Complete Failure Reporting(introduced at section
2.2), this becomes even easier for Loongcc. The general steps are
as follows:

1) Build the kernel and save log file

2) Grep error message from log file and gets the corresponding
build command. While build, kernel will save the build com-
mand of each object to a file at the same directory of the object
file, and named as ".*.cmd".

3) Use Delta [4] tool to generate small case. Delta is a tool which
assists engineers in minimizing "interesting" files. Usually "in-
teresting" means a file causing a particular error as input to a
program. When Open64 fails to compile one file, we can write a
script which include the build command and a grep for the error
message, then let delta call the script. Delta will cut the input
file if script return 0 until it cannot be minimized any more. For
debugging or bug-reporting purposes we would like to find the
minimized file, which is very helpful to triage the root cause due
to its small scale.

4) Follow normal steps of debugging Open64 to find the root cause
with the minimized case.

2.4.2 Runtime issues
Debugging environment Figure 1 gives a high-level overview
of kernel debugging environment, it uses two machines, Machine1
use QEMU simulator to load kernel image and invoke gdbserver
to listen gdb connection on specified tcp port(default port is 1234);
Machine2 use emacs & gdb attached to the remote gdbserver on
Machine1 to debug kernel source. Surely, machine1 and machine2
can be one physical machine while the logical relationships be-
tween QEMU and GDB client is still the same. Running QEMU
with "-S -s" option will freeze CPU at startup status until the gdb-
server is attached by a gdb thread from the previously specified tcp
port. Then, enter ’c’ to start the execution of Linux kernel.

2

Figure 1. Kernel runtime debugging environment

Figure 2. Kernel image construction on X8664

Debugging Techniques According to kernel source structure and
boot sequence(see Figure 2 for X8664 kernel image construction),
this paper divides kernel runtime problems into two categories
according booting stages:

1) Failures before call "start_kernel"

2) Failures after call "start_kernel"

There are 3 reasons:

1) "start_kernel" is the first break point that can be set under gdb

2) The runtime address of code running in real mode(Figure 2,
Part3) is unknown, it is determined by the design of boot loader.
So we can not set breakpoints even at fixed physical address.
As to MIPS64, there is only one file writing in assembly code.
And before start_kernel, only its object counterpart would be
executed.

3) The number of source files and code scale is small in Part1 (only
26 objects for x8664 and a single object for MIPS64), so it is
easy to debug even without gdb.

Triage and debug failures before "start_kernel" For x8664, there
are 26 objects for Part1, in which 23 objects for real mode at dir
(arch/x86/boot) and 3 objects (arch/x86/boot/compressed) for de-
compress kernel. When kernel fails before function "start_kernel",
generally follow below steps to triage:

1) Prepare GCC built kernel object files, since gcc and Open64 use
the same ABI calling conventions, their objects can be mixed
linked

2) Use following pseudo-algorithm to find the buggy objects, the
buggy objects = X - Triage(X), where X is the full list of k-
ernel objects. Triage(X) will return the correct objects built by
Open64, it is a recursive process. We implemented this algorith-

m in a tool naming BuggerInspector. It can also triage all the
runtime buggy objects in one execution.

S a f e _ o b j e c t s T r i a g e (o b j e c t _ l i s t X)
{

S a f e _ o b j e c t s Y = NULL;
whi le (X i s n o t empty)
do{

d i v i d e X t o X1 X2 ;
b u i l d X1 wi th Open64 ;
b u i l d X2 wi th GCC;
mix l i n k X1 X2 and r e b u i l d k e r n e l ;
i f (k e r n e l boo t ok) {

/ / X1 i s s a f e ;
X = X − X1 ;
Y = Y + X1 ;

}
e l s e {

i f (X2 i s empty)
re turn NULL;

e l s e {
Y = Y + T r i a g e (X1) ;
X = X − X1 ;

}
}

}
re turn Y;

}

3) Choose the smallest object file as debug focus first, sometimes
there are a lot of erroneous objects, maybe they are caused by
the same reason. To reduce workload, we choose the smallest
object first.

i) Build that object file with Open64, others with gcc, read the
source code and add "print" to get the value of variables we
interests and to determine the location of errors.

ii) Compare the different behavior with GCC-built kernel. For
ex, if some key values are different, we know an error may
occur.

iii) Compare assembler files built from gcc and opencc is also
a straight forward way.

For MIPS64, there is one single object whose source file
is head.S at dir (arch/mips/kernel), so if kernel fails before "s-
tart_kernel", the broken file is determined(head.S).

Triage and debug failures after "start_kernel" For kernel failures
after "start_kernel", break points can be set, and return to the nor-
mal "debugging world", except that the code scale becomes larger
and more complex. The general method to debug is as follows:

1) Find the buggy file or function. We use the same algorithm listed
above.

2) Debug Open64 built and gcc built kernel at the same time,
compare the behavior; add printk to source code, which will
print the message or values we wanted to the console; read
Oops info, it is the kernel message outputted when kernel occurs
fatal error. It mainly include the error overview, loaded module,
register info and backtrace info, these will help a lot in find the
place of error.

3) Generate reproducible small case.

4) Analyze the root reason and make fix or workaround

3

Bug Type Bug number
Common bugs 6
X8664 specific 30
MIPS specific 44

Table 1. Bug statistical data based on target

Bug Type Loongcc bugs Open64 bugs
Special incompatible Options 3 4
The incompatibility to gcc 6 5
GNU C extension support 29 6
Other bugs 12 21

Table 2. Bug statistical data based on bug type

3. Discussion on the problems found during
build/boot

To successfully build and boot Linux kernel on either X8664 or
MIPS, we have to fix all issues found during build and runtime.

In our endeavor, about 36 bugs were found in open64 and 50
bugs in Loongson 3B. We divide the bugs in to 3 main categories:

1) Common bugs exists on both Open64 and Loongson

2) X8664 specific issues

3) MIPS specific issues

Table 1 shows the statistical information of the bugs found in
Loongcc and Open64 when build and boot Linux kernel. There
are 6 common bugs in both Open64 and Loongcc, which mainly
follows to below aspects:

1) The O0 CFG build-up and clean problem

2) The O0/O1 inline invoking problem

3) ASM_INPUT copy-propagation problem

4) Support for GCC extension Variable-Length array in Structure

5) The GNU ASM alias issue

There are about 36 Open64 bugs, in which 30 bugs are X8664
specific, Figure 2 shows there are 4 bugs related with options
unsupported by Open64; 5 bugs are incompatible with gcc, such
as Open64 didn’t do code clean up and inline at opt-level 0; 6 bugs
are about GNU C extension support, such as embedded assembly,
variable-length array; The remaining 21 bugs are found in other
fields, such as front-end, wopt and cg.

There are about 50 Loongcc bugs, in which 44 are MIPS spe-
cific. As Linux kernel is closely Co-designed with Gcc, we note
that more than half of them are related to target-specific GNU C
language extensions[13], like MIPS embedded assembly language
support. There are also several Loongcc defects exposed. Among
them, there are only 4 original Open64 defects, like WGEN GNU
alias attribute, WGEN GNU VLS, WOPT unsafe strength reduction
transformation, Inline empty variable argument functions elimina-
tion, and the remaining bugs are more or less associating with the
Loongcc re-targeting, like position-dependent code generation sup-
port, N64 ABI support, Whirl2ops whirl node expansion missing,
asm statement support in GRA and LRA in CG, builtin function
support, etc.

In the following sections, we will introduce the detailed method
to analyze and fix the typical cases or problems listed above.

3.1 Common issues
3.1.1 The O0 CFG build-up and clean problem
Gcc regards control flow graph building as an essential step in the
compilation. This is also for portability that applied to a broad
range of distinct architectures. And CFG build-up is default en-
abled at all optimization levels, including O0. Open64, on the other
hand, believes O0 means only front-end whirl generation and back-
end code expansions. So, Open64’s O0 level keeps those unreach-
able target-specific code for other architectures until the CG phase
which of course breaks the compilation.

We have made many efforts to resolve this problem, including:
open CG cflow optimization for O0, add CG CFG build up phase,
WGEN expansion optimizations, etc. However, for the reasons of :

1) We still don’t want introduce any optimizations to O0

2) We believe introduce new phases will take more efforts and not
a good practice regarding software re-use

3) We still want to solve the problem in the back-end for the
integrity consideration

Finally, we discarded these immature ideas and resort to in-
voking restricted WOPT at O0 or O1. Inspired by preopt du-only
phase, we add phase "q" for O0 or O1. It does only restricted copy-
propagation and dead code elimination (unreachable code elimi-
nation). We handle carefully on the optimization flags to make
sure unintended optimizations would not be done. We think this
approach operating at a relatively high level and re-using the ma-
tured WOPT code coincide with good practice principles. Prob-
lem here is that opening WOPT at O0/O1 levels will introduce
long compile-time expense, since some infrastructure operations
like BB/D-U construction, Alias Analysis, HSSA constructions are
essential parts of WOPT. Another issue is that we may lose some
dwarf-info during WOPT processing. We have a preliminary work
patch for this issue, but we are still working on improve it to be a
matured solution.

3.1.2 The O0/O1 inline invoking problem
Gcc believes call graph building is an essential step in the com-
pilation. So, gcc deletes non-called file-scope routines with inline
attribute at any levels. Open64 still makes conservative handling
on inliner, the behind critiea is that inliner should only be called
at optimization levels and also the call graph based dead function
elimination functionality is coupled with the inliner. This causes
the non-called inliner routines which are not designed for current
architecture unable to build.

We solved this problem by calling inliner even at O0. At gcc
spin to whirl transformation phase, if there are inline attributed
routine, we launch the inliner which then calls DFE first, after
that we make carefully handling on the command line arguments.
Only if there are explicit instructions to inline, we open the inline
processing, otherwise, we do no inline.

3.1.3 ASM_INPUT copy-propagation problem
As well-known, Open64 disables copy-propagation into ASM_INPUT
argument due to the constraint required be in specific form. How-
ever, the disabled copy-propagation makes the unexpected self as-
signments deleted in WOPT which then causes the wrong compila-
tion. Fixing the bug by keeping specific self assignments live is not
consistent to the WOPT design since we may want distinct flags to
indicate which self assignment are to keep, this is not general and
convincible. Finally, we solved this problem by a test and approve
approach, i.e, we try propagate to ASM_INPUT’s arguments first,
if we find the propagated expression is the same form to original
one, we allow this propagation.

4

Direct result of this fix is that we both get performance upgrade
and compile time reduces. In a test for the whole kernel build, we
get 12560 test/replace out of 428777 tries in 3845 files compiling.
And we also find some optimizations originally disabled due to
ASM_INPUT as the copy-prop barrier, now enabled again, and
shows its power[8].

3.1.4 Support for GCC extension Variable-Length array in
Structure

Variable-Length Arrays (VLA) are c99-introduced[9] feature which
means a procedure scope array can be variable length, i.e, allocated
during run-time. VLA can be considered as a language standard to
substitute for alloc call. GCC extends this feature to enable aggre-
gates like structs/unions containing VLA, called Variable-Length
array in Structure (VLS). A typical VLS form as follows:

s t r u c t {

s t r u c t s d _ s h a s h ;

char c t x [c s i z e (t fm)] ;

} desc ;

Although, VLA is get commonly supported and accepted as
the language standard, VLS is still vague and not quite commonly
understand for the following reasons:

• It is completely undocumented: although GCC supports this
feature, but there are few document specify this feature at the
GCC official site. We can only guess that this feature is used
to facilitate the pattern of combination of structs with flexible
array members and VLA. In the above example, struct desc
has a flexible-array-member field ctx, which now allocates the
succeeding csize(tfm) bytes behind the structure, so desc.ctx
can be easily access the succeeding data, without hard coded
allocation and flexible-array-members definition. Although we
can guess this usage for VLS, but GNU does not make confirm
and documentation on it. So, implement this feature is quite
unsure for non-GNU compilers.

• there are semantic extensions for this feature, c99 standard[9],
page 102, describes the elements of aggregate as: A member
of a structure or union may have any object type other than a
variably modified type. This means each element of the struct
or union is non variably modified object. We can also deduce
that elements’s offset from the head of struct/union is an known
constant, i.e, access each field of the struct does not affected by
the other fields. However, see the below VLS:

s t r u c t {

i n t a ;

i n t b [x] ;

i n t c ;

} desc ;

field a and field b are accessed at fixed offset, while field c
is accessed at the (1+x) integer from the head of the struct.
Now, access of field c can be affected by a variable x, which
is belonged to variably modified field b. Semantically, access
structure field now can be affected by other variables, so this

is an unapproved fundamental change for the elements of the
language.

• The type size problem. VLS makes structure a variably modi-
fied type with unknown size. Although GCC dumps VLS struc-
ture size as -1 for unknown in the dwarf symbol info. This
is not standard, other compilers may have symbol verify dif-
ficulties with this -1 for structure size. it means the structure/u-
nion are now unknown size, unable to verify the fields are ac-
cessed/aligned with the right value. And also, other frontend
may have sizeof difficulties for VLS.

Although we have many debates and discussions on the VLS
support in Open64, we finally decide to support VLS since Open64
uses the GCC frontend. Luckily, GCC helps up much in the SPIN
tree dump: the offset computation, the sizeof issue, the transfor-
mation and protection of access negative indexed array ... etc are
all considered by GCC, and despite the semantic question, we suc-
cessfully implemented VLS in Open64. Currently, we enable -1 for
VLS size and haven’t find any issues on the symbol verification in
Open64. We don’t consider too much on the passing VLS as pa-
rameters since this is undocumented ABI.

3.1.5 The GNU ASM alias issue
In Open64, an assertion occurs in WGEN phase when two object-
s which have been declared to be alias to each other, but actually
have two different storage types. For example, an array is declared
as an alias to a function. More accurately, this bug is caused by
an unsupported GNU C extension, which is used in Linux ker-
nel for page management. In ASNI C, this case is strictly treated
as an error; while in GNU C Extension, it is legally supported by
Gcc. Open64 initially threw an assertion fail in ST_Verify_Fields,
we finally support this extension by modifying the function W-
GEN_Assemble_Alias.

3.2 X8664 specific issues
3.2.1 Front-end bugs
Currently, Open64 front-end compilation includes two steps:

1) Invoke gcc to generate spin tree. A spin tree is a tree expression
of the Abstract Syntax Tree (AST), which is very similar to gcc’s
internal tree expression. The spin tree is generated by patching
in the GCC code, which is quite hard to read and maintain.

2) Wgen translates spin tree to whirl binary files including the
whirl code and symbol table. Although the WGEN skeleton
code is in readable shape, too many un-structured detail han-
dlings have made the whole WGEN code quite difficult to main-
tain and update.

Although many efforts have been put in wgen and spin, we stil-
l find serious logic bugs in spin generation and wgen, including:
incorrect logic to update nested field id (wgen), missed updating
struct align properties in the right context(spin), incorrect setting
alias attribute(wgen). We believe it will need much more effort to
focus and fix the unknown front-end bugs, since GCC’s internal
structures are quite changed from version to version and the patch-
ing development mode is not good software practice in the long
run. So, we strongly suggest Open64 switch to individual front-end
for continuously develop and upgrade. Clang[6] has shown its ma-
ture and production quality, which is a good candidate for future
development.

3.2.2 Incompatible option fix
Besides option control made in section 2.2, we still find some
option related bugs:

5

1) "-print-file-name=library": This option is used to get the path of
compiler library header files.

2) "-m elf_i386/-m elf_x86_64": Open64 treat them as a group,
thus was wrongly transferred to linker.

3) "-mregparm=num": this option is used to control the number of
registers used to pass integer arguments. We found boot failures
caused by it, there are some hard coded asm in kernel which
designed to use specific registers to store the parameters, and
this is based on -mregparm=num is correctly set. But Open64
did not support it in the driver, and also we need it works for
built-in functions. We fixed it by enable -mregparm=num in
OPTIONS and -TENV:mregparm=num for built-in functions.

3.2.3 Conflict between Kernel code and Open64
During debug kernel problems, there are some conflicts found
between kernel code and Open64 implementation. That is if fix the
problem at Open64 will break original design principle or will cost
a lot. i.e. Open64 will generate a lot of temporary variables during
optimize phase, this causes the stack usage is often larger than gcc,
one bug found during runtime is the kernel corrupts due to stack
overflow. To fix this kind of problems, we make patches on kernel
code. But this is just a short-term solution, for the long run we need
to consider how to solve it in open64.

3.2.4 The global file scope asm
There is one serious bug been fixed related with global file scope
asm. Open64 always put global asms code to the end of assembler
file. But sometimes the global asms have code directives transferred
to assembler, and should be put where it defines, otherwise the
meaning is different. The buggy case we found in kernel is when
using asm(".code16gcc") at the begging of a file, ".code16gcc" is an
code directives, it specifies the code being assembled was generated
by GCC and therefore is 32-bit assembly code that will run in a 16-
bit segment.

To fix this problem, we changed the place where emit asm
strings, the dot structure for GS_PROGRAM as follows, in pre-
vious version of Open64, the global asm strings were emitted at
global trees list(the last field of GS_PROGRAM), that is why we
see it at the end of gspin and assembler file. And we found when
parse declarations, it just add the asm node to the top-level asm s-
tatement node list, and postpone to emit them at the end. Our fix
is to break this, once there is an asm declaration, we emitted it as
soon as possible.

r o o t d o t
/ \

. weak d e c l s
/ \

. program f l a g s
/ \

. gxx−e m i t t e d asms
/ \

. gxx−e m i t t e d d e c l s
/ \

. program d e c l a r a t i o n s
/ \

. i n t e g e r t y p e s l i s t
/ \

. g l o b a l t r e e s l i s t
/ \

GS_PROGRAM cc1 command l i n e a r g s

After some testing, we found regressions caused by above fix,
the root reason is when use global asm, compiler do know the
correct origin of objects to be allocated, so we should not emit

.org at this time, this is implemented by adding a new file info
flag:FI_HAS_GLOBAL_ASM, and this flag is set at wgen phase
when analyze gspin declarations.

With above two fixes, the global file scope asm problem was
finally resolved.

3.2.5 Other issues and fixes
Besides the above work, we also find the following issues and fixes:

• Implement the asm constraint "p" for memory load and push.
• fixed two wopt bugs due to typo and vague boundary constant

handling.
• fixed many CG bugs in the quite sensitive part, for example,

the wrong EBO peephole optimization, the wrong handling of
some asm constraint, improved asm constraint based register
allocation, . . . , etc.

3.3 MIPS-specific issues
3.3.1 Incompatiable option and C Language extensions
1) Embedded assembly: As previously noted, there are about 29

bugs in this category. Especially, we note that bugs caused by
unsupported embedded assembly extension occupy much more
percentage (25 out of 50) than other C language extensions.
This phenomenon results in that embedded assembly extensions
for MIPS target are not well-documented and Linux kernel us-
es lots of features that the only document is GCC source code,
which makes even harder for us to resolve corresponding bugs.
We have to use a test-driven framework for enabling embedded
assembly support for MIPS. By using the assertion mechanis-
m of Loongcc, comparing the assembly generated by Loongcc
and GCC and referring to source code of Gcc, we finally make
it work. These bugs are mainly about new MIPS embedded
assembly input/output constraints support, including the value
range assertion of the immediate, the data-type of the input/out-
put variables, ways of register allocation, etc. These supports
are mainly done in the WHIRL to OPS phase in CG when han-
dling ASM relative stuff. Besides, there are also modifications in
other phases of Open64 for assembly support, including copy-
propagation supporting for specified constraint of asm statement
in WOPT, asm WHIRL generation support in WGEN, and as-
sembly modification for specified constraints in CG emit.

2) Special incompatible Options : Besides option control made in
section 2.2, we enhance Loongcc to support option "-print-file-
name=include", this option is used by Gcc or Open64 to get
the path of compiler library header files. Because Loongcc is
a X86-MIPS cross compiler, the library path is different from
Open64. The way Open64 using is not suitable for Loongcc.
We add NAMEPREFIX information to help Loongcc to invoke
mips64el-st-Linux-gnu-gcc to get the right path.

3) N64 ABI support: Loongcc was originally designed for 32-
bit user-space high performance computing applications named
N32 ABI(Application Binary Interface) on Loongson3[15, 16],
which is a MIPS-64 compatible 8-core CPU. It can only gen-
erate N32-ABI compatible codes. However, to fully exploit 64-
bit CPU performance, only MIPS N64 compatible Linux kernel
is in practical use on Loongson platform. Thus, we have to en-
hance Loongcc with N64 ABI support for Linux kernel building.
Besides, MIPS N64 feature is a critical step for more 64-bits H-
PC applications to run on Loongson-based servers. This support
is been done by carefully modifying the target information and
dedicated TN relocation in Loongcc.

4) Position dependent code support: Besides the N64 ABI fea-
ture of the available Linux Kernel release on Loongson3, this

6

release is also position dependent, that means the kernel exe-
cutable must be loaded into fixed-physical memory address for
successfully booting. Loongcc formerly only supported user-
space position independent code. Therefore, position dependent
feature must be developed firstly. We extended the symbol flag
for MIPS relocation information, which is used in function Ex-
p_Ldst, to generate an offset relative to the address of this flag.
In addition, there are also some modifications in function call
WHILR_expanding. In this way, Loongcc does not turn to the
original gp-relative mechanism for locating a symbol.

5) Built-in function: Another Loongcc defect exposed is caused by
the reference of Gcc built-in function __builtin_return_address.
For better performance, Gcc provides a set of built-in functions.
One of these functions is __builtin_return_address, which re-
turns the return-address of the current function. In Open64, it is
translated into a built-in symbol "__return_address" which is lo-
cated in the frame controlled by FP. As a result, the FP register
$fp is introduced after code generation. But in the localization
phase, it is considered as illegal. The solution is, in CG local
register allocation phase, we modified Loongcc to not allocate
dedicated FP register for this function.

3.3.2 Loongcc defect
1) Inline : For Loonson, Open64 does not inline a variable argu-

ment function with empty body even if the function has inline
qualifier. On the contrary, Gcc always inlines such a function,
neglecting whether the function has an empty body. There was
a bug triggered by this different feature. Function pr_debug has
reference to a structure pptp_msg_name which is only defined
when macro DEBUG is turned on. In release mode, although
the reference to undefined pptp_msg_name still exists, after in-
lining there is no reference generated because pr_debug’s body
is empty. However, as Open64 does not inline this variable ar-
gument function pr_debug, references to the undefined structure
pptp_msg_name still exists and thus a link error occurs.We fixed
this defect by taking the same strategy of Gcc.

2) WOPT unsafe strength reduction transformation: We have
solved a serious defect that misused homomorphism map be-
tween modular integer rings with radix 232 and 264. The prob-
lematic code was as below.

i n t 3 2 done = 0 ;
i n t 6 4 d a t a = 0 ;
do
{

done += 6 4 ;
s r c = d a t a + done ;

} whi le (done + 63 < l e n) ;

When doing invariant variable hosting, Loongcc first identified
"data" that is an invariant variable having the potential to be
hoisted. Thus, the compiler has mistakenly merged two loop
statements into one, namely yield the code as below:

i n t 3 2 done = 0 ;
i n t 6 4 d a t a = 0 ;
do
{

s r c = (d a t a + done) + 6 4 ;
} whi le (done + 63 < l e n) ;

As known, the variable "data" is 64-bit integer in the ring of
Z/nZ, where n is 264; and "one" is 32-bit integer in the ring of
Z/mZ, where m is 232. And, the homomorphism map

CVTU8U4(A+B)=CVTU8U4(A)+CVTU8U4(B)

does not hold, where CVTU8U4 is an integer conversion from
32-bit to 64-bit. For example, assume A=232-1, B=1. So, we
have

CVTU8U4(A)+CVTU8U4(B) = 232

CVTU8U4(A+B) = 0

Obviously, the assumption of homomorphism was wrong. This
defect caused a memory corruption, since the variable "done"
had kept a wrong memory address. Our fix have removed all
this kind of wrong logics.

3) CG: In CG function Assign_Registers_For_OP, Loongcc in-
vokes function OP_side_effects to check whether an OP has side
effects or not. However, OP_side_effects omitted OP attribute
volatile which implicates a possible side effects. In the following
code segment from MIPS Linux kernel, asm function called by
atomic_add actually has side effects on variable temp. Because
temp is used in the atomic addition operation in asm function.
Despite the asm function has a volatile attribute, Loongcc still
misjudged the case. Thus, in the later local register allocation
phase, Loongcc allocate register $0 for variable temp. On MIPS
platform, Register $0 always holds value zero. Therefore an infi-
nite loop was formed. The solution is to replace OP_side_effects
with OP_has_implicit_interactions which checks volatile flags
of an OP.
//Side effect asm function in arch/mips/include/asm/atomic.h

s t a t i c _ _ i n l i n e _ _ _ _ a t t r i b u t e _ _ ((
a l w a y s _ i n l i n e))

void a tomic_add (i n t i , a t o m i c _ t ∗ v)
{

/ / o t h e r code o m i t t e d . . .
i n t temp ;

__asm__ _ _ v o l a t i l e _ _ (
" . s e t mips3 \ n "
" 1 : l l %0, %1 # a tomic_add \ n "
" addu %0, %2\n "
" sc %0, %1\n "
" beqz %0, 2 f \ n "
" . s u b s e c t i o n 2 \ n "
" 2 : b 1b \ n "
" . p r e v i o u s \ n "
" . s e t mips0 \ n "
: "=&r " (temp) , "=m" (v−>c o u n t e r)
: " I r " (i) , "m" (v−>c o u n t e r)) ;
/ / o t h e r code o m i t t e d . . .

}

//assembly code wrongly generated by Loongcc
//for asm segment of atomic_add

1 : l l $0 , ($25) # a tomic_add
addu $0 , $31
sc $0 , ($25)
beqz $0 , 2 f # $0 n e v e r change

t o a non−z e r o v a l u e
. s u b s e c t i o n 2

2 : b 1b
. p r e v i o u s
. s e t mips0

7

4. Current status
4.1 Loongson
After much effort, Linux kernel 2.6.35 is successfully compiled by
Loongcc and booting on a virtualized MIPS64 machine, which is
simulated with Qemu 0.12.5. And this Qemu has been modified
to support Loongson3 special hardware features. The version of
the GDB client is mips64el-unknown-Linux-gnu-GDB 7.3.1 with
a patch[14] which enable the 32-bit GDB client work correctly
with the 64-bit GDB server built-in Qemu. Malta mother board
embedded a MIPS64 CPU is simulated, and memory size is 256
MBs.

4.2 Open64
Linux Kernel versions 2.6.32.6 successfully built and boot on
x8664 at O2. About 36 bugs reported at Open64 bugzilla[7]. All
bugs have been fixed at Open64 trunk or have workaround fix.

4.3 Future work
In future, there are a lot of interesting works.

For Loongcc Robustness and performance for a full MIPS(Loongson)
Linux distribution will be enhanced continually, of which the most
compelling is shown below:

1) Merge update on Loongcc branch to Open64 trunk.

2) Build Linux kernels on all Loongson products and boot on real
machines.

3) Use Loongcc for building more basic GNU/Linux system com-
ponents, key applications, and finally a full Linux distribution.
We have successfully built binutils, gcc, Mplayer and bootstrap.

4) Improve the command line compatibility between open64 and
Gcc. Before any critical decisions made by OSG on the front-
end of Open64, compatiability with Gcc is still a key feature.

5) Optimize the performance of Linux Kernel and key applications,
such as firefox, Apache and the like.

For Open64 There are at least 3 areas need further work:

1) Improve Open64 and remove workaround fix. Some of the
workarounds have not been approved by the community, we
are working continuously to improve the workarounds to formal
bug fix. We believe these upcoming fix for bugs will enhance
the Open64’s stability more.

2) Build and boot kernel at more optimize level. Currently, we have
only successfully build and run Linux kernel on O2 optimiza-
tion. Other levels, just like the "O0 -g" to get the debug build k-
ernel, IPA/IPO customized kernel for performance and O3 level
for aggressive optimization have not been built-up yet. Working
on these levels will benefit the study for both the Open64 com-
piler and Linux kernel. We wish we can gain more experiences
and contributes more to the open source community.

3) Boot Open64 built kernel on real machines, install packages
and do more tests. All the triage and run up tests have been
performed under the QEMU vm machine, we have not prove
the Open64-built kernel successfully run on real machines, this
should be a short-term goal. Unless the kernel run stably and
optimized on real machines, we can say we achieve our initial
goal. Only by showing the production quality running the kernel
stuff, we can attract more people get interested in Open64’s
ability in system software are. As a long-term goal, we’d like
to compile and run large volumes open source softwares under
Open64’s native kernel. We have already done things on this
area, we will work on to bring up Open64 as an alternative
compiler for a Linux distribution.

Acknowledgments
Tao and Kun’s team are grateful for Loongcc team members: Hu
Shiwen, Huang Lei, Li Xin, Lian Ruiqi, Liu Ying, Lu Tingyu, Zhao
Hongjian and Zhang Mang, who fixed most of the bugs in Loongcc
MIPS64 Linux kernel building process.

Qing, Gang and Jian-Xin would like to thank the Open64 com-
munity, especially Sun Chan for their helpful reviews, comments
and suggestions.

Lastly, honours should be ascribed to developers of MIPSPro,
Pathscale and ORC for their contributions to the open source soci-
ety.

References
[1] Zhou Shuchang, Liu Ying, Lv Fang, Yin Le, Huang Lei, Li Shuai,

Ma Chunhui, Gao Zhitao, Lian Ruiqi, Open64 on MIPS: porting and
enhancing Open64 for Loongson II, Open64 Workshop at CGO 2009.

[2] https://events.Linuxfoundation.org/slides/2011/lfcs/lfcs2011_llvm_lelbach.pdf
[3] The QEMU project. http://qemu.org
[4] Delta page. http://delta.tigris.org
[5] Linux Kernel Project. http://www.kernel.org/
[6] The clang Project. http://clang.llvm.org
[7] The Open64 bugzilla. https://bugs.open64.net/
[8] http://sourceforge.net/mailarchive/forum.php?thread_name=CAEwdn1C
[9] The ISO/IEC 9899:TC3: Programming Language C. www.open-

std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
[10] The Impact of Compiling a LINUX Kernel with INTEL C/C++

Compiler on Computer Clusters Used by Science. Problems of
Engineering Cybernetics and Robotics,ISSN:0204-9848, Volume
56,2006. http://www.iit.bas.bg/pecr/56/78-85.pdf

[11] The Linux Kernel build white paper.
http://software.intel.com/file/6390

[12] [ANNOUNCE] Clang builds a working Linux Kernel
(Boots to RL5 with SMP, networking and X, self hosts),
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2010-October/011711.html

[13] GNU C Language Extensions.
http://tigcc.ticalc.org/doc/gnuexts.html. Dec 20th, 2011

[14] Patching GDB 7.3 for QEMU remote kernel debug.
http://torokerneleng.blogspot.com/2011/08/patching-gdb-73-for-qemu-
remote-kernel.html. August 25th, 2011

[15] Loongson 3B CPU details.
http://www.loongson.cn/EN/product_info.php?id=33. Nov 15th,
2011

[16] HU W, WANG R, CHEN Y, et al. Godson-3B: A 1GHz 40W 8-core
128GFLOPS processor in 65nm CMOS. Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2011 IEEE International.2011

8

