uVisor
finy
hypervisor/microkernel-like tiny security
kernel at the foundation of mbed OS5

Jim Huang (=8H#E) <jserv>
1RKE <JaredCJR>
FRIRERIERABIUF T / Nov 28, 2015

l%w % @ 'f}) “% National Cheng Kung University

Abstract

 loT systems require an effective security
framework where application code, protocol
stacks, firmware distribution and installation, key
provisioning, device management and diagnosis
even under targeted attacks.

 This talk presents advanced security features in
ARM mbed OS for ARM Cortex-M processor to
secure firmware updates and the cloud

communication.
— how memory protection unit (MPU) is used in practice
by developers on mbed OS to compartmentalize code
and sensitive data while accelerating development.

Attackl!

7z S HEED 2=
{RHX USB SRR B M H
Aftack iOS through USB charger!

- BlackHat 2013

— MACTANS: INJECTING MALWARE INTO IOS DEVICES VIA
MALICIOUS CHARGERS

— http://www.blackhat.com/us-13/briefings.ntml#Lau

- "we demonstrate how an iOS device can be
compromised within one minute of being plugged into a
malicious charger. We first examine Apple’s existing
security mechanisms to protect against arbitrary software
installation, then describe how USB capabilities can be
leveraged to bypass these defense mechanlsms

[

THRARHY USB Mass Storage 4E g
Plug and "Pray”

- BlackHat 2014

BadUSB — On accessoriesthatturn evil
https://srlabs.de/badusb/

USEB controller Flash

USB device

m - USB plug-and-play .. '

Bootloader

Register
The only part

Set address . visible to the user
Power-on + < g
Firmware init Send descriptor 2

= a E

Set configuration Load driver ‘

Normal operation | Keyboard emulalon is enough for infec[on

S _ g and privilege escalalon (withoutr need for

Optioual: Seregeter soffware vulnerability)

Register again ... :
5 Load another

driver

Restart screensaver with password
stealer added via an LD_PRELOAD
library

daky

B e AN 19 [F] B

DNS assignment in All DNS
DHCP over spoofed 4 queries go to
USB-Ethernet attacker’s DNS

- adapter server

- USB &£ E A3t A Ethernet &

£ DHCP {Fi1REVIBIEH , 457 RS \EiDNS {alikes , (B
faim DRI IESR , B2 DNS s EE &
- redlreCtlon attaCk RDP Client RDP Server

L

Rogue
device

(
- USB Redirection via RDP

Easy Print / Drive Redirection / Smart Card Redirection

Plug-and-Play Device Redirection / Input Redirection /
Audio Redirection / Port Redirection Source:USB attacks need physical

access right? Andy Davis

AIE#E ABHZE PO notnomal.com

ARM Cortex-M profile:
Deeply Embedded Devices

Power awareness; solid and limited applications
Multi-tasking or cooperative scheduling is still required

loT (Internet of Things) is the specialized derivative with
networking facility

Communication capability is built-in for some products
Example: AIRO wristband (health tracker)

lol Security

a LIIfE{:}"Cle SECU rlt}l’ Directory and Subscrgtion Security, Admin and Multi-teruncy
Drana Flow Maragemseng — RESTR and PublchSulbsonbe

== Drevice Maragement = Lghtwesgte MM [LWA2M)
mbsd Crevice Interface = Open Wels Standands
Application Transfer Protocols — CofP HTTE MQTT

mbed TLS

A- Communication _ bed Device Server
a Security . =
= {2 {‘v 3 @

IPv&, 6LoVVPAN
mbed TLS

- Device Management: LWHM2M
)) | uVisor |
Device Security = '
mbed O5

' ARM

« ARM mbed OS * TrustZone in ARMv8-M
- ARM mbed uVisor - security lifecycle management
 ARM mbed TLS - Apache License

« because of the huge amount of code involved in maintaining WiFi connections or enabling ZigBee
or BLE communication, the resulting attack surface is almost impossible to verify and therefore
compromises device security

loTeapot “Hello World” Example — The Attacker View

= Even simple loT products require .

complex components
= Secure server communication over : _ -
L Application |
complex protocols

BLE Stack

1S Library [Dignostis|
|
= Cryptography APIs and random number

Management
Crypto API

= Existing loT solutions use flat address
Firmware
Update

= Secure firmware updates over the air
= Unclonable cryptographic device identities

spaces with little privilege separation —

especially on microcontrollers ﬁ

- the recovery from a common class of security flaws - the execution of arbitrary code by an attacker
— Even a hardware-enforced root of trust and a secure boot loader will not fix that problem: the
resident malware can run safely from RAM and block reset commands or flash erasing as part

of a denial-of-service attack.
Source: ARM TechCon 2015

loTeapot “Hello World” Example — Mitigation Strategies

= Split security domains into

= exposed uncritical code

= protected critical code

= Keep footprint of critical code
small to enable verification

—] | ——————

S
| —

Secure
Storage

= Protect key material and system
integrity using the ARMv7-M
hardware memory protection

Application

yeldelde]
L : Crypto
| TLS Library

Device 1
- Tl
B Management B
-

= Public code operates on cryptographic

d
o

| Secure |ID
secrets via defined private APl — no ”
access to raw keys -

Source: ARM TechCon 2015

loTeapot “Hello World” Example — Mitigation Strategies

= Attackers can compromise the exposed
side without affecting critical code

= Using cryptographic hashes
the integrity of the exposed side
can be verified

= Triggered on server request

rirmware
Update

Secure
Storage

Applicaticn

.ol
F'rotc*.o Core
ibary B8l Keys

Device ;d_l- CWPtOAPI JL

Dl'—!gnose

= The device attack surface is massively ‘
reduced as a result

= Protected security watchdog box allows
remote control

= Protected side can reliably reset
exposed boxes to a clean state

Source: ARM TechCon 2015

@*ﬁﬁ uVisor Ziﬁ@ﬁ‘é\ﬁ%%

Security Functionality:
Cryptography
Key Management
Secure FW Upgrade
Secure ldentity
Security Monitoring

Isolated Strong

Separation o

Firmware

Update

BLE Stacle

WWiFi Stacl

Secure

Application Storage
| Protocol

Crypto
| TLS Library Keys

‘ Device g Crypto API
| Management ¥ o
| SecurelD

Diagnose

uVisor Design Principles

Hardware-enforced security sandboxes

mbed 05 and User Application
[Fublic codel/data]

Mutually distrustful security model
— “Principle of Least Privilege” Device Security Services

. [Frivate code/data]
— Boxes are protected against each other

— Boxes protected against malicious code from

— broken system components, driver or other boxes gieor [Pxieeed]

. ARM Correx-M CPU [privilege enforcement]
Enforce API entry points across boxes

: . ARM Cortex-M MPU [parttion enforcement]
— Box-APIs can be restricted to specific boxes

Memory/Peripherals (SRAM; Flash: DMA; Crypro HW)

Per-box access control lists (ACL)
— Restrict access to selected peripherals

— Shared memories for box-box communication

- Box security not affected by communication
stack exploits or infections outside of

trusted box

- Resilient box communication over the

available channels
— Ethernet, CAN-Bus, USB, Serial

— Bluetooth, Wi-Fi, ZigBee, 6LoWPAN

Re-flash Untrusted
Application Upon Completion

——P Opague —J Opague Block Firmware Updace Image
([]
Decrypt
GAP
3 and verify
E .
o using
E GATT DTLS
E AP
£ e
£ irmw are
g BLELL update blocks e
=
Y Bluetcoth Fwoos =9y
Communication Secured and trusted Secure Storage,
Stack device process Firmware Update Blocks
Exposed bax with Flash interface box protected by uVisor
communication stack —without own communication stack

loT device owned by user,
Initial identity provisioned by System Integrator,
Messages delivered independent of stacks

—-—-# Opague —# Opaque Block
‘§ Decrypt
GAP
o and wverify
& using
E GATT DTLS
a AP
<
- Commands,
ﬁ BLELL Dara,
o Firmware Blob
- Bluetooth
Communication Secured and trusted
Stack device process
Exposed box with Trusted box without

communication stack cammunication Stack

loT Device owned by user.
Initial identity provisioned by System Integrator
Messages delivered agnostic of communication stack

Firmware manifest block augments
existing firmware formats with
safety and security features

Crypto watchdog box enforces
remote updates even for infected
devices

Source: ARM TechCon 2015

uVisor Memory Model

i it '

SRAM Flash
[Protected VTORs J [Unprotected VTORSJ
uVisor allocates protected per-box stacks and [wvisor data] (_Flash Config / Fuses)
detects under-/overflows during operation (Tuvisorbss stack) : pvisor code j
Main box memory accessible to all boxes e (
All remaining per-Box data sections are secure box [n] stack
protected by default: Socure box [0] bss
= Secure Per-Box Context Memory e loation cods
= Shared data/peripherals with other boxes on _oonst dats)
secure box data al)
demand 3 | main data J
= uVisor resolves ACLs during boot and by e
identifies ACL collisions | J |8 | Hvisordata |
uVisor code sections visible to everybody (main bss [cocuroboxdata |
Empty flash memory is made available to the (| E wvisor configuration 3
system as configuration storage — write access
only through configuration API | main hesp |
i main stack |

How ACLs are implemented

- ACLs and Box contexts isolation are implemented
via MPU

Box1 view MPU Box2 view

Box1 Generic Box2
context ACLs context

Exposed
User Application Code

Secured Services

sl Crypto AP

ﬁ*Keys IDv —

Secure Memory

Exposed Operating
System Code

MPU or SAU
Hardware Filter

Hardware

USBI e IUSART Flash DMA

"Initialization of memory protection unit
based on box ACL’s

— only necessary peripherals are accessible to box
— Each box has private .bss data and stack sections

Secure memory

RN
#include <uvisor-lib/uvisor-1lib.h>

/* create background ACLs for the main box */
static const UvBoxAclItem g background_acl[] = {
{UARTO, sizeof (*UARTO), UVISOR TACL PERIPHERAL},
{UART1, sizeof (*UART1), UVISOR TACL PERIPHERAL},
{PIT, sizeof (*PIT),UVISOR_TACL PERIPHERAL}, 1};

uVisor Booft

Sequence
(ARMv7-M)

uVisor initialized first in boot\

process

— Private stack and data sections

— Private data sections in flash for
. storing secrets

o = e e = = e = = e = e = = e -—— -

" Relocation of interrupts vector table into

-~ -

UVISOR_SET MODE_ACL (UVISOR_ENABLED, g background_acl); /* set uvisor mode */

\

Proftected

Secured Services S a I’] d b OX

v

Crypto API

v

/* private box context */

o

@ Keys ID typedef struct {

,,E_ Exposed Operating uint8_t secret [SECRET _SIZE];
| System Code Secure Memory bool initialized;

} BoxContext;*/

MPUOrsAU |
‘Hardware Filter 25

Hardware

/* create ACLs for the module */
static const UvBoxAclItem g _box acl[] = {

{RNG, sizeof (*RNG), UVISOR TACIL_PERIPHERAL},
s

/* configure secure box compartment */
UVISOR_BOX_ CONFIG (my_ box name, g box acl,
0x100 /* required stack size */, BoxContext) ;

Non-secure Box Secure Box C a | | G a Te Wa y

func(args)
A

secure A return
gateway

= Call gateways only accepted from flash

* the actual secure gateway *

¥

me m0ry #define secure gateway(dst box, dst fn,

(1

= attacker has no write access to flash controller ST amee TmoEEeE S

= Metadata of call gateway at a fixed offset register uint3s t res asm(“r0%);
asm volatile (
from uVisor gateway context switch — a "syc UVISOR API_SVC_CALL ID\n"
. "b.n skip metadata%=\n"
supervisor call (SVC) " word UVISOR SVC GW MAGIC\n"
- Contains pointer to target box configuration & e

_ ".word dst box## cfg ptr\n"
target function "skip metadata%=:\n"
: "=r" (res)

= Guaranteed latency for cross-box calls I ——

= Can limit access to specific caller boxes i

res;

= Security verified once during installation N

boxB call . Secur%fF;lnctinn

Function Call Gateway via SVC

1. Save boxB's context
boxB call > SEEWEG fF:nmiDn

2. Load boxA's context
1.boxB M0 boxA Ffrig {89 secure function, LEEFZR#E7E Unprivileged mode, 1E#11T boxB HY context

3. Setup stack frame
4. Return to A
» boxA

2.secure function B E{EH svc EA uVisor #£8Y svc handler , LEEFZR4RTE Privileged mode
3.7E svc handler #2# context switch , i boxB tJI#@Z boxA (svc_cx_switch_in)

4. svc handler #5R & t#2[E Unprivileged mode, A% stack frame ¥2AIAN BB El registers ¥, ELL PCE
1515 boxA FUE IR R E]

1. Load boxB's context
2. Setup stack frame

3. Retunnto B
» boxB

boxA YTl s ex unk

1.boxA BEIRFSLERE , B LR #5825 sve_cx_tunk B9zt , ELEFEEREIREIZE sve_cx_tunk, #IT
sve_cx_tunk ZEEBIRIEN sve, [E]Z] uVisor ¥/ svc_handler

2.7f svch_hadler #&j A\ boxB B context , % boxA B9 context t]#:[a boxB

3.svc handler 551 3% [B] boxB

Interrupt Management APIs

vIRQ SetVectorX()
vIRQ GetVector ()
VvIRQ EnableIRQ ()
vIRQ DisableIROQ ()
VvIRQ ClearPendingIRQ () w%]
vIRQ SetPendingIRQ ()

vIRQ GetPendingIRQ ()
vIRQ SetPriority ()
vIRQ CGetPriority ()

vIRQ GetLevel () Interrupt Forwarding

Box Context

VIRQ_Xxxxxxxxx (args)

NVIC_xoooxxxxx (args)

uvisor

box

(original)

Communications across Boxes

1. Save original box

2. Load irq box's context
3. Setup stapk frame _

4. Return to irq box's irq handle.r._ hox

(irq)

Z24 1R Interrupt Forwarding. uVisor FERREEZEREFFENEAS irq RIRIRE S FHEEER box. RIZWT :
static inline __ attribute__ ((always_inline))
void unvic_isr mux (void)

1.Interrupt ZEEFEHITE(E box RIBHE

asin

2.3 A uVisor FEz%HY interrupt handler

box
(irq)

return
_-..

uVisor
irq Handler

volatile(

"sve %[unvic_in]\n"
"sve % [unvic_out]\n"
"bx lr\n"

:: [unvic_in] "im (UVISOR_SVC_ID UNVIC_IN),
[unvic_out] "i" (UVISOR_SVC ID_UNVIC_OUT)

1. Load original box's context
2. Setup stack frame
3. Return to box

box
(original)

1.box irq handler #{T4ER % , iR[E Ir #ERYMLUE , uVisor irq handler #RYZE Z{E sve, BIXERE , LbhF
Ty B 12 unprivileged mode.

2.5 svc RERMEA |, BBIXEA uVisor sve handler.

3.7F uVisor svc handler 2 EFE AR AR PEEY box, &
£ BEIREIFE A box HIBITIRIE

& TEIR[O]AY stack frame {E87E svc handler 4558

Proposed DebugBox

Secure Gateway

Secure Gateway

,¢' External communications

DebugBox

Secure Gateway

Secure Gateway

Q_{”ﬂﬁ

IPC * How can DebugBox retrieve information from

BoxA when BoxA falls into exceptions?
* How can DebugBox be implemented without
violating the design principles of uVisor?

Mailbox communications

Box request

request

request

- The communication request instead of being transmitted
immediately and delivered at an appointed time/at a desirable
time, it is buffered in mailbox. The mailbox can be divided into
two components: message queue and eventloop.

Event Loop

-PL....“......._.......u

« Once Recv box completes its handling, the resource must
return immediately and the initial box needs restoration.
Furthermore, to avoid resource holding permanently, there is
also a mechanism to recycle the resource automatically.

Ad-Hoc Debugging

Cortex-M device

Host PC
Application with
MRI debugging Info _
(GDB Compatiable) S;tggnmum-
CrashCatcher CrashDebug
(post-mortem
debugging)
CrashCatcher
Debug Box
GDB remote
protocol System 1

(remote) GDB

Reference hardware:
STM32F429i Discovery

MRI: Monitor for Remote Inspection

Cortex-M device ost PC

Application with
MRI debugging Info

, Serial GDB with
CrashCatcher senal fe— [CrashDebug
MRI CrashCatcher
Cortex-M Device Cortex-M Common |
Common : _ SPeciiic (Cortex-M registers / Device
(Debug Monitor) § ([orrumeaton’ HardFault_handler..)} Specific

MRI is a debug monitor which allows the GDB to debug applications
running on Cortex-M devices using a full featured source level
debugger with no extra hardware other than a serial connection.

uVisor integration reduces cycles for exposed boxes
— Still a secure product!

Simple recovery from programming bugs in exposed code using
secure boxes

Application Code Libraries

mbed OS AP
— : N -
Communication Management mbed Client ﬁ Communicatior
Core Schedulers Event BLE AP
IP Stack
Energy Tasks Thread API
Drivers CMSIS-Core Debug Support Device Drivers h Lifecycle
v Security
mbad 68 Secure Drivers Lifecyde Security
uVisor uVisor
H Device
Hardware Interfaces _
Security
MmCu

- ARM Cortex-M processor enables highly deterministic real-time
applications to develop high-performance low-cost platforms, and
uvisor utilizes Cortex-M advantages to build the efficient and
secure trusted computing base (TCB)

Reference

Resilient loT Security: The end of flat security
models, Milosch Meriac, ARM TechCon 2015

smart solutions for the internet of things, Genesi
USA, Inc.

Introduction to mbed-OS uvisor, Viller Hsiao

ARMIlock: Hardware-based Fault Isolation for
ARM, North Carolina State University / Xi'an
Jiaotong University / Florida State University

Mactans: Injecting Malwareinto iOS Devices
via Malicious Chargers

	Efficient Software-Based Fault Isolation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

