
GridGraph: Large-Scale Graph Processing
 on a Single Machine

Using 2-Level Hierarchical Partitioning

Xiaowei ZHU
Tsinghua University

1

Widely-Used Graph Processing

2

Existing Solutions
• Shared memory
– Single-node & in-memory
– Ligra, Galois, Polymer

• Distributed
–Multi-node & in-memory
– GraphLab, GraphX, PowerLyra

• Out-of-core
– Single-node & disk-based
– GraphChi, X-Stream, TurboGraph

3

Existing Solutions
• Shared memory
– Single-node & in-memory
– Ligra, Galois, Polymer

• Distributed
–Multi-node & in-memory
– GraphLab, GraphX, PowerLyra

• Out-of-core
– Single-node & disk-based
– GraphChi, X-Stream, TurboGraph

Large-scale
Limited capability to big graphs

Irregular structure
Imbalance of computation and communication

Inevitable random access
Expensive disk random access

4

Existing Solutions
• Shared memory
– Single-node & in-memory
– Ligra, Galois, Polymer

• Distributed
–Multi-node & in-memory
– GraphLab, GraphX, PowerLyra

• Out-of-core
– Single-node & disk-based
– GraphChi, X-Stream, TurboGraph
Most cost effective!

Large-scale
Limited capability to big graphs

Irregular structure
Balance of computation and communication

Inevitable random access
Expensive disk random access

5

Methodology
• How to handle graphs that is much larger than

memory capacity?
– Partition! System Unit

GraphChi Shards

TurboGraph Page

X-Stream Streaming Partitions

PathGraph Tree-Based Partitions

FlashGraph Page

GridGraph Chunks & Blocks

State-of-the-Art Methodology

• X-Stream
– Access edges sequentially from disks
– Access vertices randomly inside memory
• Guarantee locality of vertex accesses by partitioning

7

State-of-the-Art Methodology
• X-Stream
– Access edges sequentially from slow memory
– Access vertices randomly inside fast memory
• Guarantee locality of vertex accesses by partitioning

DiskDisk

MemoryMemory

CacheCacheIn-memory

Out-of-core
8

Edge-Centric Scatter-Gather

X-Stream: Edge-centric Graph Processing using Streaming Partitions, A. Roy et al., SOSP 2013

Scatter:
for each streaming partition

load source vertex chunk of edges into fast memory
stream edges

append to several updates

Gather:
for each streaming partition

load destination vertex chunk of updates into fast
memory

stream updates
apply to vertices

source

destination

9

Motivation

Question: Is it possible to apply on-the-fly updates?
(Thus bypass the writes and reads of updates.)

source

destination

Can be as large as O(E)!

10

Basic Idea

Answer: Guarantee the locality of both source
and destination vertices when streaming edges!

Streaming-Apply:
for each streaming edge block

load source and destination vertex chunk of edges into memory
stream edges

read from source vertices
write to destination vertices

source & destination

11

Solution
• Grid representation
– Dual sliding windows
– Selective scheduling

• 2-level hierarchical partitioning

12

Edge Block(2, 1)

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)
Source

Chunk 2

Destination
Chunk 1

Grid Representation

1

2

3

4

(a) Anexamplegraph (b) Grid representation

Figure1: Organizationof theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacan befit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. We choose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

• Vertices partitioned into P equalized chunks
• Edges partitioned into P × P blocks

– Row source
– Column destination P=2

13

Streaming-Apply Processing Model
• Stream edges block by block

– Each block corresponding to two vertex chunks
• Source chunk + destination chunk
• Fit into memory

• Difference with scatter-gather
– 2 phases 1 phase
– Updates are applied on-the-fly

P=4dest. chunk 2

src. chunk 3

14

Dual Sliding Windows
• Access edge blocks in column-oriented order
– From left to right

– Destination window slides as column moves

• From top to bottom
– Source window slides as row moves

– Optimize write amount
• 1 pass over the destination vertices

P=4

15

Dual Sliding Windows

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

1
1

1
1

0 0 0 0
PR

NewPR

2
2

1
2

Deg

Initialize

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organization of theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacanbefit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. Wechoose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

1, 2, 0

1, 2, 0

1, 2, 0

1, 1, 0

Object I/O Amt.

Edges 0

Src. vertex 0

Dest. vertex 0

P=2

16

Dual Sliding Windows

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

1
1

1
1

0.5 0.5 0 0
PR

NewPR

2
2

1
2

Deg

Stream Block (1, 1)

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organization of theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacanbefit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. Wechoose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

1, 2, 0.5

1, 2, 0.5

1, 2, 0

1, 1, 0

Cache source vertex chunk 1 in memory (miss);
Cache destination vertex chunk 1 in memory (miss);
Read edges (1, 2), (2, 1) from disk;

Object I/O Amt.

Edges 0 2
Src. vertex 0 2
Dest. vertex 0 2

P=2

17

Dual Sliding Windows

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

1
1

1
1

0.5 2 0 0
PR

NewPR

2
2

1
2

Deg

Stream Block (2, 1)

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organization of theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacanbefit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. Wechoose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

1, 2, 0.5

1, 2, 2

1, 2, 0

1, 1, 0

Object I/O Amt.

Edges 2 4
Src. vertex 2 4
Dest. vertex 2

Cache source vertex chunk 2 in memory (miss);
Cache destination vertex chunk 1 in memory (hit);
Read edges (3, 2), (4, 2) from disk;

P=2

18

Dual Sliding Windows

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

1
1

1
1

0.5 2 0.5 0.5
PR

NewPR

2
2

1
2

Deg

Stream Block (1, 2)

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organization of theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacanbefit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. Wechoose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

1, 2, 0.5

1, 2, 2

1, 2, 0.5

1, 1, 0.5

Object I/O Amt.

Edges 4 6
Src. vertex 4 6
Dest. vertex 2 6

Cache source vertex chunk 1 in memory (miss);
Cache destination vertex chunk 2 in memory (miss);

Write back destination vertex chunk 1 to disk;
Read edges (1, 3), (2, 4) from disk;

P=2

19

Dual Sliding Windows

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

1
1

1
1

0.5 2 1 0.5
PR

NewPR

2
2

1
2

Deg

Stream Block (2, 2)

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organization of theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacanbefit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. Wechoose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

1, 2, 0.5

1, 2, 2

1, 2, 0.5

1, 1, 1

Object I/O Amt.

Edges 6 7
Src. vertex 6 8
Dest. vertex 6

Cache source vertex chunk 2 in memory (miss);
Cache destination vertex chunk 2 in memory (hit);
Read edges (4, 3) from disk;

P=2

20

Dual Sliding Windows

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

1
1

1
1

0.5 2 1 0.5
PR

NewPR

2
2

1
2

Deg

Iteration 1 finishes

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organization of theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacanbefit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. Wechoose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

1, 2, 0.5

1, 2, 2

1, 2, 0.5

1, 1, 1

Object I/O Amt.

Edges 7

Src. vertex 8

Dest. vertex 6 8

Write back destination vertex chunk 2 to disk;

P=2

21

I/O Access Amount
• For 1 iteration

1 pass over the edges (read)

1 pass over the destination vertices (read+write)

P pass over the source vertices (read)

E + (2 + P) × V

Implication: P should be the minimum value that
enables needed vertex data to be fit into memory.

22

I/O Access Amount
• For 1 iteration

1 pass over the edges (read)

1 pass over the destination vertices (read+write)

P pass over the source vertices (read)

E + (2 + P) × V

Implication: P should be the minimum value that
enables needed vertex data to be fit into memory.

23

DiskDisk

MemoryMemory

CacheCache

Memory Access Amount
• For 1 iteration

1 pass over the edges (read)

1 pass over the destination vertices (read+write)

P pass over the source vertices (read)

E + (2 + P) × V

24

DiskDisk

MemoryMemory

CacheCache

Implication: P should be the minimum value that
enables needed vertex data to be fit into memory.

Selective Scheduling
• Skip blocks with no active edges
– Very simple but important optimization
– Effective for lots of algorithms
• BFS, WCC, …

25

Selective Scheduling

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organizationof theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacan befit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. We choose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

BFS from 1 with P = 2

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)Iteration 1

Active True False False False

Parent 1 -1 -1 -1

Active False True True False

Parent 1 1 1 -1

Before

After

Access 4 edges

26

Selective Scheduling

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organizationof theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacan befit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. We choose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

BFS from 1 with P = 2

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

Active False True True False

Parent 1 1 1 -1

Active False False False True

Parent 1 1 1 2

Before

After

Access 7 edgesIteration 2

27

Selective Scheduling

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organizationof theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacan befit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. We choose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

BFS from 1 with P = 2

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

Active False False False True

Parent 1 1 1 2

Active False False False False

Parent 1 1 1 2

Before

After

Access 3 edgesIteration 3

28

Selective Scheduling

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organizationof theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacan befit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. We choose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

BFS from 1 with P = 2

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

Parent 1 1 1 2

4+7+3=14
Access 14 edges

in all
BFS finishes

29

1

2

3

4

(a) Anexamplegraph (b) Gridrepresentation

Figure1: Organizationof theedgeblocks

Figure 2: Edgeblock size distribution of Twitter graph
usinga32⇥32partitioning.

queue(to achievesubstantial sequential disk band-
width, wechoose24MB tobethesizeof eachedge
batch).

2. Eachworker thread fetches a task fromthequeue,
calculates theblock thateachedgeinthisbatchbe-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
eachworker threadmaintains alocal buffer of each
block, andflushes tofilesoncethebuffer is full.

After thepartitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
toosmall toachievesubstantial sequential bandwidthon
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graphusing a32⇥32partitioning,
whichconforms to thepower-law [7], withalargenum-
berof small filesandafewbigones. Thusfull sequential
bandwidth cannot beachievedsometimes duetopoten-
tially frequent disk seeks. To avoid such performance
loss, an extramergephase is required for GridGraph to
performbetter onHDDbasedsystems, inwhichtheedge
block filesareappended into alargefileoneby oneand
thestartoffsetof eachblock isrecordedinmetadata. The
timetakenbyeachphaseisshowninSection4.

2.2 Discussion

Different from the shard representation used in
GraphChi, GridGraphdoesnot requiretheedges ineach
block tobesorted. ThishencereducesbothI/Oandcom-
putation overhead in preprocessing. We only need to
read andwrite theedges fromand to disks once, rather
than several passes over the edges in GraphChi. This
lightweightpreprocessingprocedurecanbefinishedvery
quickly (seeTable2), which ismuchfaster thanthepre-
processingof GraphChi.
X-Stream, ontheother hand, doesnot requireexplicit

preprocessing. Edgesareshuffledtoseveral filesaccord-
ingto thestreamingpartition. Nosorting is requiredand
thenumber of partitions isquitesmall. Formanygraphs
that all thevertex datacan befit intomemory, only one
streaming partitions is needed. However, this partition-
ingstrategymakes it inefficient for selectivescheduling,
which can largely affect its performance onmany itera-
tivealgorithmsthatonlyaportionof theverticesareused
insomeiterations.
It takesvery short timeforGridGraph tocompletethe

preprocessing. Moreover, thegenerated grid format can
beutilized in all algorithms running on thesamegraph.
By partitioning, GridGraph is able to conduct selective
schedulingandreduceuncessaryaccesses toedgeblocks
without activeedges1. Wecanseethat this contributesa
lot inmany iterativealgorithms likeBFS andWCC (see
Section 4), whichalargeportion of vertices areinactive
inmany iterations.
Theselectionof thenumber of partitionsP isvery im-

portant. With a more fine-grained partitioning (which
meansalarger valueof P), whilethepreprocessing time
becomes longer, better access locality of vertexdataand
more potential in selective scheduling can beachieved.
Thus a larger P is preferred in partitioning. Currently,
wechooseP insuchaway that thevertexdatacanbefit
into last level cache. We choose P to be theminimum
integer suchthat

V
P
⇥U C,

whereC is thesizeof last level cacheandU is thedata
size of each vertex. This partitioning shows not only
goodperformance (especially for in-memory situations)
butalso reasonablepreprocessing cost. InSection 4, we
evaluatetheimpactof P anddiscussthetrade-offsinside.

3 TheStreaming-Apply ProcessingModel

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quiredandthewriteI/O amount isoptimized toonepass
over thevertices.

1Anedgeisactiveif itssourcevertex isactive.

Impact of P on Selective Scheduling
BFS from 1

Effect becomes better with more fine-grained partitioning.

P 1 2 4

Edge accesses 21(=7+7+7) 14=(4+7+3) 7=(2+3+2)

30

Implication: A larger value of P is preferred.

Dilemma on Selection of P

P
small large

Coarse-grained

Fewer accesses on vertices

Poorer locality
Less selective scheduling

Fine-grained

Better locality
More selective scheduling

More accesses on vertices

31

Dilemma from Memory Hierarchy
• Different selections of P
– Disk – Memory hierarchy
• Fit hot vertex data into memory

– Memory – Cache hierarchy
• Fit hot vertex data into cache

– Disk – Memory – Cache
• ?

DiskDisk

MemoryMemory

CacheCache

32

2-Level Hierarchical Partitioning
• Apply a Q × Q partitioning over the P × P grid

• Q ≥ V / M
• P ≥ V / C
• C << M
• P >> Q

– Group the small blocks into larger ones

P = number of partitions, M = memory capacity, C = LLC capacity, V = size of vertices

P=4 Q=2

33

Programming Interface
• StreamVertices(Fv, F)

• StreamEdges(Fe, F)

34

• Applications
– BFS, WCC, SpMV,

PageRank

Evaluation
• Test environment
– AWS EC2 i2.xlarge
• 4 hyperthread cores
• 30.5GB memory
• 1 × 800GB SSD

– AWS EC2 d2.xlarge
• 4 hyperthread cores
• 30.5GB memory
• 3 × 2TB HDD

35

BFS WCC SpMV PageRank
0

0.5

1

1.5

2

2.5

3

3.5

4

GraphChi
X-Stream
GridGraph

LiveJournal

BFS WCC SpMV PageRank
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

GraphChi
X-Stream
GridGraph

Twitter

BFS WCC SpMV PageRank
0

0.2

0.4

0.6

0.8

1

1.2

GraphChi
X-Stream
GridGraph

UK Yahoo
Runtime(S) BFS WCC SpMV PageRank

GraphChi - 114162 2676 13076

X-Stream - - 1076 9957

GridGraph 16815 3602 263.1 4719

“-” indicates failing to finish in 48 hours
i2.xlarge, memory limited to 8GB 36

Disk Bandwidth Usage

I/O throughput of a 10-minute interval running PageRank on Yahoo graph 37

Effect of Dual Sliding Windows

38

PageRank on Yahoo

Reads Writes
0

100

200

300

400

500

600

700

800

GraphChi
X-Stream
GridGraph

I/
O

 A
m

ou
nt

Effect of Selective Scheduling

39

WCC on Twitter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

X-Stream
GridGraph

Iteration

I/
O

 A
m

ou
nt

Impact of P on In-Memory Performance

40

1 10 100 1000
75

80

85

90

95

100

105

110

115

120

P

Ru
nti

m
e(

s)

PageRank on Twitter
Edges cached in 30.5GB memory

Optimal around P=32 where needed vertex data can be fit into L3 cache.

Impact of Q on Out-of-Core Performance

41

SpMV on Yahoo
Memory limited to 8GB

Optimal at Q=2 where needed vertex data can be fit into memory.

1101001000
200

300

400

500

600

700

800

900

Ru
nti

m
e(

s)

Comparison with Distributed Systems

• PowerGraph, GraphX *
– 16 × m2.4xlarge, $15.98/h

• GridGraph
– i2.4xlarge, $3.41/h
• 4 SSDs
• 1.8GB/s disk bandwidth

* GraphX: Graph Processing in a Distributed Dataflow Framework, JE Gonzalez et al., OSDI 2014 42

0
100
200
300
400
500
600
700
800
900

PowerGraph
GraphX
GridGraph

Conclusion
• GridGraph
– Dual sliding windows
• Reduce I/O amount, especially writes

– Selective scheduling
• Reduce unnecessary I/O

– 2-level hierarchical grid partitioning
• Applicable to 3-level (cache-memory-disk) hierarchy

43

Thanks!

44

	Slide 1
	Widely-Used Graph Processing
	Existing Solutions
	Existing Solutions
	Existing Solutions
	Methodology
	State-of-the-Art Methodology
	State-of-the-Art Methodology
	Edge-Centric Scatter-Gather
	Motivation
	Basic Idea
	Solution
	Grid Representation
	Streaming-Apply Processing Model
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	I/O Access Amount
	I/O Access Amount
	Memory Access Amount
	Selective Scheduling
	Selective Scheduling
	Selective Scheduling
	Selective Scheduling
	Selective Scheduling
	Impact of P on Selective Scheduling
	Dilemma on Selection of P
	Dilemma from Memory Hierarchy
	2-Level Hierarchical Partitioning
	Programming Interface
	Evaluation
	Slide 36
	Disk Bandwidth Usage
	Effect of Dual Sliding Windows
	Effect of Selective Scheduling
	Impact of P on In-Memory Performance
	Impact of Q on Out-of-Core Performance
	Comparison with Distributed Systems
	Conclusion
	Slide 44

