GridGraph; Large-Scale Graph Processing

on a Single Machine
Using 2-Level Hierarchical Partitioning

Xiaowei ZHU
Tsinghua University

Widely-Used Graph Processing G

.
§ amazoncom

Existing Solutions

* Shared memory
— Single-node & in-memory
— Ligra, Galois, Polymer
* Distributed
— Multi-node & in-memory
— GraphLab, GraphX, Powerlyra

* Qut-of-core

— Single-node & disk-based
— GraphChi, X-Stream, TurboGraph

Existing Solutions

* Shared memory Large-scale
Limited capability to big graphs

L. Irregular structure
* Distributed Imbalance of computation and communication

Inevitable random access
* Out-of-core Expensive disk random access

Existing Solutions

Inevitable random access
* Out-of-core Expensive disk random access

Most cost effective!

Methodology

* How to handle graphs that is much larger than

memory capacity?
— Partition!

GraphChi
TurboGraph
X-Stream
PathGraph
FlashGraph
GridGraph

Shards

Page

Streaming Partitions
Tree-Based Partitions
Page

Chunks & Blocks

State-of-the-Art Methodology

* X-Stream
— Access edges sequentially from disks

— Access vertices randomly inside memory
* Guarantee locality of vertex accesses by partitioning

State-of-the-Art Methodology

* X-Stream
— Access edges sequentially from slow memory

— Access vertices randomly inside fast memory
* Guarantee locality of vertex accesses by partitioning

EC

In-memory

Memory

Disk

Out-of-core

Edge-Centric Scatter-Gather

1. Edge Centric Scatter
Edges (sequential read)

Scatter:
| for each streaming partition
load source vertex chunk of edges into fast memory
source
ices (random read/write) Stream ed €s
append to several updates

u‘u Updates (sequential write)

2. Edge Centric Gather

Gather:
for each streaming partition
load destination vertex chunk of updates into fast
memory
stream updates
apply to vertices

X-Stream: Edge-centric Graph Processing using Streaming Partitions, A. Roy et al., SOSP 2013

Updates (sequential read)

destination
Vertices (random read/write)

€

Motivation

1. Edge Centric Scatter
Edges (sequential read)

Question: Is it possible to apply on-the-fly updates?
ices (random readwrite) (Thus bypass the writes and reads of updates.)

| u‘u Updates (sequential write)

2. Edge Centric Gather

Can be as large as O(E)!

Updates (sequential read)

destination
Vertices (random read/write)

€

Basic Idea

Edges (sequential read)

Answer: Guarantee the locality of both source
source & destination and destination vertices when streaming edges!

ices (random read/write)

Streaming-Apply:
for each streaming edge block
load source and destination vertex chunk of edges into memory
stream edges
read from source vertices
write to destination vertices

Solution

* Grid representation
— Dual sliding windows
— Selective scheduling

* 2-level hierarchical partitioning

Grid Representation

« \Vertices partitioned into P equalized chunks
« Edges partitioned into P x P blocks Destination
— Row < source :Chunk 1;

— Column & destination . s
(1,2) | (
(2,1) | (

p=2

Ne
NS

Chunk2| (3,2) | (4,3)
> (42

N
Edge Block(2, 1)

Streaming-Apply Processing Model =

* Stream edges block by block

— Each block corresponding to two vertex chunks
* Source chunk + destination chunk

dest. chunk 2 P=4

* Fit into memory

* Difference with scatter-gather src. chunk 3
— 2 phases 2 1 phase

— Updates are applied on-the-fly

Dual Sliding Windows S

* Access edge blocks in column-oriented order

P=4
— From left to right R
— Destination window slides as column moves
* From top to bottom / / /
— Source window slides as row moves / /
v EESVA Wi VA H -]
— Optimize write amount

* 1 pass over the destination vertices

Dual Sliding Windows S

pP=2
PR Deg NewPR W
SR EKRCKR [oviet [1oAm:_
14 21 (1,2) | (1,3) Edges 0
1 2 (2,1) | (2,4) Src.vertex O
1411 (3,2) | (43) Dest. vertex 0
2 (4,2
Initialize
PageRank;
PageRank; = (1 —d) + d * z 5 gD .
utDegree;

JEN jn (1) 16

Dual Sliding Windows S

p=2
PR Deg NewPR W
y [0505] 00 Object | 1/0 Amt.
11 21| (4,2) | (1,3) Edges 0?2
121 (2,1) | (2,4

Src.vertex (0> 2

) | (4,3) Dest. vertex 0 - 2

=
N -
0
SIS

Stream Block (1, 1)

Cache source vertex chunk 1 in memory (miss);
Cache destination vertex chunk 1 in memory (miss);
Read edges (1, 2), (2, 1) from disk;

17

Dual Sliding Windows S

P=2
PR Deg NewPR W
¢ [052] 00 m I/0 Amt.
142 (1,2) | (1,3) Edges 24
1| 2
(2,1) | (2,4) Src. vertex 254
11114 (3,2) | (4,3) Dest. vertex 2
L2 (4,2

Stream Block (2, 1)

Cache source vertex chunk 2 in memory (miss);
Cache destination vertex chunk 1 in memory (hit);
Read edges (3, 2), (4, 2) from disk;

18

Dual Sliding Windows S

P=2
PR Deg NewPR W
v ¥ 0.52 |0.50.5 m 1/0 Amt.
1102 (1,2) | (1,3) Edges 456
11121 (2,1 | (2,4)
Src.vertex 46
1 1 (3,2) | (4,3) Dest. vertex

Stream Block (1, 2)

Cache source vertex chunk 1 in memory (miss);
Cache destination vertex chunk 2 in memory (miss);
Write back destination vertex chunk 1 to disk;
Read edges (1, 3), (2, 4) from disk; 19

Dual Sliding Windows S

p=2
PR Deg NewPR W
y ¢ | 052105 Object | 1/0 Amt.
11 2| (1,2) | (1,3) Edges 6> 7
1 2
(2,1) | (2,4) Src. vertex 6> 8
1901 (3,2) | (4,3) Dest. vertex 6
11121 (4,2

Stream Block (2, 2)

Cache source vertex chunk 2 in memory (miss);
Cache destination vertex chunk 2 in memory (hit);
Read edges (4, 3) from disk;

20

Dual Sliding Windows S

p=2
PR Deg NewPR WV
J & |052]105 m I/0 Amt.
1] 2] (1,2)] (1,3) Edges 7
1| 2
(2,1) | (2,4) Src. vertex 8
1011 (3,2) | (4,3) Dest. vertex ¢ - §
T2 42

Iteration 1 finishes

Write back destination vertex chunk 2 to disk;

21

/O Access Amount

* For 1 iteration
E + (g + _P) x \/

1 pass over the edges (read) P pass over the source vertices (read)

1 pass over the destination vertices (read+write)

Implication: P should be the minimum value that
enables needed vertex data to be fit into memory.

€

/O Access Amount

* For 1 iteration

4 (24+P) XV
= m— == Memory
Disk

1 pass over the edges (read) P pass over the source vertices (read)

1 pass over the destination vertices (read+write)

Implication: P should be the minimum value that
enables needed vertex data to be fit into memory.
23

€

Memory Access Amount

* For 1 iteration

E+(2+_P)XV Cache

= Memory
Disk

1 pass over the edges (read) P pass over the source vertices (read)

1 pass over the destination vertices (read+write)

Implication: P should be the minimum value that
enables needed vertex data to be fit into memory.

€

Selective Scheduling

* Skip blocks with no active edges
— Very simple but important optimization
— Effective for lots of algorithms
* BFS, WCC, ...

Selective Scheduling

BFS from 1 with P =2 Active | True | False | False | False

Parent 1 -1 -1 -1 Before
(1,2) | (1,3)
(2,1) | (2,4)

Iteration 1 (3,2) | (4 3) Access 4 edges

(4, 2)

Active | False | True | True | False

After
Parent 1 1 1 -1

Selective Scheduling

BFS from 1 with P =2 Active | False | True | True | False
Parent 1 1 1 -1 Before
(1,2) | (1,3)
(2,1) | (2,4)
Iteration 2 (3,2) | (4 3) Access 7 edges
(4, 2)
Active | False | False | False | True
After
Parent 1 1 1 2

Selective Scheduling

BFS from 1 with P =2 Active | False | False | False | True

Parent 1 1 1 2 Before
(1,2) | (1,3)
(2,1) | (2,4)

Iteration 3 (3,2) | (4 3) Access 3 edges

(4, 2)

Active | False | False | False | False

After
Parent 1 1 1 2

€

Selective Scheduling

BFS from 1 with P =2

Parent 1 1 1 2

(1,2) | (1,3)

(2,1) | (2,4) 4+7+3=14
BES finishes 3.2) | 4.3) Access 14 edges

(4: 2) ’ in all

Impact of P on Selective Scheduling

BFS from 1

Edge accesses 21(=7+7+7) 14=(4+7+3) 7=(2+3+2)

Effect becomes better with more fine-grained partitioning.

Implication: A larger value of P is preferred.

30

€

Dilemma on Selection of P

Coarse-grained Fine-grained

Fewer accesses on vertices Better locality

More selective scheduling
Poorer locality

Less selective scheduling More accesses on vertices

small large

Dilemma from Memory Hierarchy

* Different selections of P

— Disk - Memory hierarchy
* Fit hot vertex data into memory

— Memory - Cache hierarchy
* Fit hot vertex data into cache

— Disk - Memory - Cache

o ?

Cache

Memory

Disk

€

2-Level Hierarchical Partitioning

* Apply a Q x Q partitioning over the P x P grid
*Q2V/M i
*P>V/C
* C<«<M
* P>>Q
— Group the small blocks into large

P = number of partitions, M = memory capacity, C = LLC capacity, V = size of vertices

Programming Interface

. Algorithm 3 PageRank
» StreamVertices(F , F) “tuncioncovmmmureo
Accum(&NewPR|e.dest], PRle.source])

Degle.source|

end function
function COMPUTE(v)
NewPR[v] = 1 —d+d x NewPR|v]

return [NewPR[v] — PR[V||
o StreamEdges(F_,F) catmion

d=0.85
PR={1,...,1}
Converged =0
while —Converged do
NewPR = {0,...,0}
StreamEdges(Contribute)
Diff = Stream Vertices(Compute)
Swap(PR, NewPR)
Converged = % < Threshold
end while

Evaluation

« Applications

* Test environment
— BFS, WCC, SpMYV,

— AWS EC2 i2.xlarge

* 4 hyperthread cores PageRank
* 30.5GB memory
* 1 x 800GB SSD
— AWS EC2 d2.xlarge Dataset \ E Data size P
e /4 hyperthread cores LiveJournal 4.85M 69.0M 527MB 4
Twitter ~ 61.6M 147B 11GB 32
* 30.5GB memory UK 106M 3.74B 28GB 64

Yahoo 1.41B 6.64B 50GB 512

* 3x2TBHDD

4 -
3.5 1
3
2.5
2
1.5
1-
0.5

0-

1.2 -

BFS

BFS

wWCC

wWCC

SpMV

SpMV

LiveJournal
m GraphChi
I X-Stream
[GridGraph
PageRank
UK

i GraphChi
[X-Stream
[GridGraph

PageRank
i2.xlarge, memory limited to 8GB 26

2 -
1.8 Twitter ‘
1.6 -
14
1.2 -
m GraphChi
14 M X-Stream
0.8 1 71 GridGraph
0.6 -
0.4 -
0.2 -
0 -
BFS WCC SpMV PageRank
Yahoo
GraphChi - 114162 2676 13076
X-Stream - - 1076 9957
GridGraph 16815 3602 263.1 4719

o »n

indicates failing to finish in 48 hours

Disk Bandwidth Usage

GraphChi X-Stream GridGraph
600

450
300
150

0

600
450
300
150

Reads (MB/s)

Writes (MB/s)

R=116.6,W =18.42 R=250.0,W=183.8 R=327.2,W=179.67

I/0 throughput of a 10-minute interval running PageRank on Yahoo graph

Effect of Dual Sliding Windows

/0 Amount

800

700

600

500 -

400

300

200

100 -

Reads Writes

PageRank on Yahoo

m GraphChi
i X-Stream
| GridGraph

38

€

Effect of Selective Scheduling =

80 —
70 -
60 -
50

40 -
= X-Stream
mmm GridGraph

1/0 Amount

30
20
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration

WCC on Twitter
39

€

Impact of P on In-Memory Performance

120
115
110
105
100
95
90
85 -
80 -
75

Runtime(s)

T T 1
1 10 100 1000
P

PageRank on Twitter
Edges cached in 30.5GB memory

Optimal around P=32 where needed vertex data can be fit into L3 cache.
40

€

Impact of Q on Out-of-Core Performance

- 900
- 800
~ 700
- 600

- 500

Runtime(s)

- 400

~ 300

200

I T T
1000 100 10 1

SpMV on Yahoo
Memory limited to 8GB

Optimal at Q=2 where needed vertex data can be fit into memory.
41

Comparison with Distributed Systems

* PowerGraph, GraphX *
— 16 x m2.4xlarge, $15.98/h
* GridGraph

—i2.4xlarge, $3.41/h
* 4 SSDs
* 1.8GB/s disk bandwidth

* GraphX: Graph Processing in a Distributed Dataflow Framework, JE Gonzalez et al., OSDI 2014 42

Conclusion
* GridGraph

— Dual sliding windows
* Reduce I/O amount, especially writes

— Selective scheduling
* Reduce unnecessary I/0
— 2-level hierarchical grid partitioning
* Applicable to 3-level (cache-memory-disk) hierarchy

Thanks!

	Slide 1
	Widely-Used Graph Processing
	Existing Solutions
	Existing Solutions
	Existing Solutions
	Methodology
	State-of-the-Art Methodology
	State-of-the-Art Methodology
	Edge-Centric Scatter-Gather
	Motivation
	Basic Idea
	Solution
	Grid Representation
	Streaming-Apply Processing Model
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	Dual Sliding Windows
	I/O Access Amount
	I/O Access Amount
	Memory Access Amount
	Selective Scheduling
	Selective Scheduling
	Selective Scheduling
	Selective Scheduling
	Selective Scheduling
	Impact of P on Selective Scheduling
	Dilemma on Selection of P
	Dilemma from Memory Hierarchy
	2-Level Hierarchical Partitioning
	Programming Interface
	Evaluation
	Slide 36
	Disk Bandwidth Usage
	Effect of Dual Sliding Windows
	Effect of Selective Scheduling
	Impact of P on In-Memory Performance
	Impact of Q on Out-of-Core Performance
	Comparison with Distributed Systems
	Conclusion
	Slide 44

