
z

BitSec: A secure microkernel

for deeply embedded systems

Jim Huang (黃敬群)

National Cheng Kung University, Taiwan
Dec 17, 2016 / OS2ATC 2016

2015年 7月，安全研究人员 Charlie Miller和 Chris
Valasek永远地改变了汽车行业“车辆安全”的概念。
他们展示了黑客能够远程攻击一辆 2014款 Jeep

Cherokee，禁用其变速器和刹车。这一发现导致菲亚特克
莱斯勒前所未有地召回 140万车辆

Source:
http://www.leiphone.com/news/201512/DEGhPfKRnyRxaGmS.html

July 2015: Miller and Valasek
takedown of Jeep

source: http://illmatics.com/Remote%20Car%20Hacking.pdf

D-Bus service responding to
an open 3G port

“To find vulnerable vehicles you just need to scan on
 port 6667 from a Sprint device. . . “

Without Over-the-Air Updates,
Jeep is stuck

Dec. 2015 view of Uconnect update

p0wn-to-
own

Connectivity may be a bad choice

“Shuttle bus withJ1939 air conditioning,”
Metropolitan Atlanta
Rapid Transit Authority,
http://can-newsletter.org

● The “Thermo King Intelligaire III“

http://can-newsletter.org/engineering/applications/nr_shuttle-bus-with-j1939-air-conditioning_thermoking_131008/

BitSec:
secure microkernel / hypervisor

OPERATING SYSTEM Hardware-assisted protection

ARM TrustZone® enabled
SoC or

Cortex-M4

L O G O

L O G O I N B L A C K

L O G O C O L O R V E R S I O N S

L O G O O N B L A C K

SMART CONNECTED DEVICE

Normal AppNormal App

Security Critical
Assets
Security Critical
Assets

Secure domainSecure domain

API Call on
Security critical
Routine

API Call on
Security critical
Routine

Trusted AppTrusted App

Trusted App -
Secured
Critical Assets

Trusted App -
Secured
Critical Assets

‹ Key assets exposed ‹ Key assets protected

‹ Isolated
space for
handling
high value
assets

Background of BitSec
‹ Learnt from uVisor, part of ARM mbed

– Hardware-enforced security sandboxes
– “Princle of Least Privilege”
– Boxes are protected against each other and malicious code is contained
– Per-box access control lists (ACL)
– Restrict access to selected peripherals
– Shared memories for box-box communication

‹ but, BitSec is lightweight and faster
‹ Apache License 2.0

Exposed Critical

Secure
Storage

Crypto Keys

Secure ID

Firmware
Update

Crypto API

PR
N

GApplication
Protocol

TLS Library

Diagnose

WiFi Stack

BLE Stack

Device
Management

FIRMWARE
PROJECT

FIRMWARE
PROJECT

USER PROJECTUSER PROJECT
Non-secure stateNon-secure state Secure stateSecure state

System startSystem start

FirmwareFirmware

Communication
stack

Communication
stack

User
application

User
application

I/O driverI/O driver

Function callsFunction calls

StartStart

Function callsFunction calls

Function callsFunction calls

 Security inferred from instruction address
 Secure memory considered to hold Secure code.

 Direct function calls across boundary
 High performance and high security
 Multiple entry points
 No need to go via “monitor” for transitions.

 Uses Secure Gateway instruction “SG”
 Only permitted in special Secure memory with

Non‑secure‑callable attribute (NSC).

Non‑secure
Handler

Mode

Non‑secure
Handler

Mode

Non‑secure
Thread

Mode

Non‑secure
Thread

Mode

Secure
Handler

Mode

Secure
Handler

Mode

Secure
Thread

Mode

Secure
Thread

Mode

CallsCalls

CallsCalls

Cross-domain call in ARMv8-M

Secure memory (Non-secure callable)Secure memory (Non-secure callable)

NonSecureFunc:
BL SecureFunc

<Non-secure code>

SecureFunc:
SG

<Secure code>
BXNS lr

Non-secure memoryNon-secure memory

Enter Secure state

Call

Properties of BitSec

‹ ARMv7-M friendly: efficient application isolation
– designed to use the ARMv7-M MPU for isolation
– Ready for ARMv8-M TrustZone enablement

‹ third-generation microkernel
‹ heavily inspired by seL4
‹ Focuses on minimality and security,
‹ Expresses all authority through explicit capabilities,
‹ Moves other mechanisms with security implications outside

the kernel,
‹ explicitly targets systems with between 16 and 200 kiB of

RAM. 2K LoC

Basic Concepts

‹ Object-oriented
– object bundling together state and operations

‹ Capability-oriented
– use of a capability, or key
– object reference and a set of rights

‹ Messaging-oriented
– single efficient message-transfer operation called IPC
– operate on kernel objects
– communicate between application tasks.

Capabilities

‹ without holding additional authority, programs can only
perform three operations on a key
– Copy the key into a different key register
– Send a message to the object designated by the key
– Receive a message from the object designated by the key

System Calls

‹ similar design as seL4
– send, receive, yield

‹ IPC
– synchronous rendezvous messaging model
– messages are sent from one object to another directly
– without being buffered in the kernel

‹ Copy key
– Reads a key from one of current Context’s Key Registers
– Writes a duplicate of it into another

Hardware-assisted protection

FreeRTOSFreeRTOS

Security Critical
Assets
Security Critical
Assets

Secure domainSecure domain

API Call on
Security critical
Routine

API Call on
Security critical
Routine

Trusted AppTrusted App

Trusted App -
Secured
Critical Assets

Trusted App -
Secured
Critical Assets

‹ Isolated
space for
handling
high value
assets

Case Study:
FreeRTOS Integration
‹ context switch latency between FreeRTOS tasks: 2x overhead
‹ FreeRTOS on BitSec gains several features that are missing

from the ARM_CM3 port
– memory-protected environment
– Ability to run entirely in unprivileged code
– run a hybrid system

● FreeRTOS drivers + (trusted) native BitSec drivers

Case Study:
FreeRTOS Integration
‹ not a FreeRTOS API emulation layer or simulator.

– actual FreeRTOS code, derived from the ARM_CM3 port
– including the scheduler

‹ FreeRTOS System layer implements:
– Allocation and deletion of OS objects (task/queue/heap)
– Mutexes with priority inheritance
– operation timeouts and time-slicing with preemption.

‹ Two contexts in FreeRTOS/BitSec
– Task context

● model Thread execution code; used to run FreeRTOS
– Interrupt context

● model Handler execution code such as ISR
● implement some virtual interrupts

Virtual interrupts for guest OS

‹ Messages Model Supervisor Calls
– Task and Interrupt Contexts share access to a Gate

● called the System Gate (SG)
– FreeRTOS sends BitSec IPC messages through SG

● Requesting a context switch
● Enabling/disabling interrupts

– Interrupt context holds Service Key to task context
‹ Context Switches Multiplex the Task Context
‹ Message Dispatch Loop Multiplexes the Interrupt Context

	投影片 1
	投影片 2
	投影片 3
	投影片 4
	投影片 5
	投影片 6
	Why use a TEE?
	TEE Uses Cases
	投影片 9
	投影片 10
	投影片 11
	投影片 12
	投影片 13
	投影片 14
	投影片 15
	投影片 16

