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2015年 7月，安全研究人员 Charlie Miller和 Chris
Valasek永远地改变了汽车行业“车辆安全”的概念。
他们展示了黑客能够远程攻击一辆 2014款 Jeep

Cherokee，禁用其变速器和刹车。这一发现导致菲亚特克
莱斯勒前所未有地召回 140万车辆

Source:
http://www.leiphone.com/news/201512/DEGhPfKRnyRxaGmS.html



July 2015: Miller and Valasek
takedown of Jeep

source: http://illmatics.com/Remote%20Car%20Hacking.pdf



D-Bus service responding to
an open 3G port

“To find vulnerable vehicles you just need to scan on
 port 6667 from a Sprint device. . . “



Without Over-the-Air Updates,
Jeep is stuck

Dec. 2015 view of Uconnect update

p0wn-to-
own



Connectivity may be a bad choice

“Shuttle bus withJ1939 air conditioning,”
Metropolitan Atlanta
Rapid Transit Authority,
http://can-newsletter.org

● The “Thermo King Intelligaire III“

http://can-newsletter.org/engineering/applications/nr_shuttle-bus-with-j1939-air-conditioning_thermoking_131008/


BitSec:
secure microkernel / hypervisor
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Background of BitSec
‹ Learnt from uVisor, part of ARM mbed

– Hardware-enforced security sandboxes
– “Princle of Least Privilege”
– Boxes are protected against each other and malicious code is contained 
– Per-box access control lists (ACL)
– Restrict access to selected peripherals
– Shared memories for box-box communication

‹ but, BitSec is lightweight and faster
‹ Apache License 2.0
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 Security inferred from instruction address
 Secure memory considered to hold Secure code.

 Direct function calls across boundary
 High performance and high security
 Multiple entry points
 No need to go via “monitor” for transitions.

 Uses Secure Gateway instruction “SG”
 Only permitted in special Secure memory with

Non‑secure‑callable attribute (NSC).
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Properties of BitSec

‹ ARMv7-M friendly: efficient application isolation
– designed to use the ARMv7-M MPU for isolation
– Ready for ARMv8-M TrustZone enablement

‹ third-generation microkernel
‹ heavily inspired by seL4
‹ Focuses on minimality and security,
‹ Expresses all authority through explicit capabilities,
‹ Moves other mechanisms with security implications outside

the kernel,
‹ explicitly targets systems with between 16 and 200 kiB of

RAM. 2K LoC



Basic Concepts

‹ Object-oriented
– object bundling together state and operations

‹ Capability-oriented
– use of a capability, or key
– object reference and a set of rights

‹ Messaging-oriented
– single efficient message-transfer operation called IPC
– operate on kernel objects
– communicate between application tasks.



Capabilities

‹ without holding additional authority, programs can only
perform three operations on a key
– Copy the key into a different key register
– Send a message to the object designated by the key
– Receive a message from the object designated by the key



System Calls

‹ similar design as seL4
– send, receive, yield

‹ IPC
– synchronous rendezvous messaging model
– messages are sent from one object to another directly
– without being buffered in the kernel

‹ Copy key
– Reads a key from one of current Context’s Key Registers
– Writes a duplicate of it into another



Hardware-assisted protection
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Case Study:
FreeRTOS Integration
‹ context switch latency between FreeRTOS tasks: 2x overhead
‹ FreeRTOS on BitSec gains several features that are missing

from the ARM_CM3 port
– memory-protected environment
– Ability to run entirely in unprivileged code
– run a hybrid system

● FreeRTOS drivers + (trusted) native BitSec drivers



Case Study:
FreeRTOS Integration
‹ not a FreeRTOS API emulation layer or simulator.

– actual FreeRTOS code, derived from the ARM_CM3 port
– including the scheduler

‹ FreeRTOS System layer implements:
– Allocation and deletion of OS objects (task/queue/heap)
– Mutexes with priority inheritance
– operation timeouts and time-slicing with preemption.

‹ Two contexts in FreeRTOS/BitSec
– Task context

● model Thread execution code; used to run FreeRTOS
– Interrupt context

● model Handler execution code such as ISR
● implement some virtual interrupts



Virtual interrupts for guest OS

‹ Messages Model Supervisor Calls
– Task and Interrupt Contexts share access to a Gate

● called the System Gate (SG)
– FreeRTOS sends BitSec IPC messages through SG

● Requesting a context switch
● Enabling/disabling interrupts

– Interrupt context holds Service Key to task context
‹ Context Switches Multiplex the Task Context
‹ Message Dispatch Loop Multiplexes the Interrupt Context
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