
Deep Dive into TiDB
SunHao | PingCAP

Agenda

▪ Why we need a new database

▪ The goal of TiDB

▪ Design && Architecture
▪ Storage Layer

▪ Scheduler

▪ SQL Layer

▪ Spark integration

▪ TiDB on Kubernetes

Why we Need a NewSQL Database

● From scratch

● What’s wrong with the existing DBs?

● RDBMS

● NoSQL & Middleware

● NewSQL: F1 & Spanner

1970s 2010 2015 Present

MySQL
PostgreSQL
Oracle
DB2
...

Redis
HBase
Cassandra
MongoDB
...

Google
Spanner
Google F1
TiDB

RDBMS NoSQL NewSQL

What to build?

● Scalability
● High Availability
● ACID Transaction
● SQL

A Distributed, Consistent, Scalable, SQL Database that
supports the best features of both traditional RDBMS and
NoSQL

Open source, of course

What problems we need to solve

▪ Data storage

▪ Data distribution

▪ Data replication

▪ Auto balance

▪ ACID Transaction

▪ SQL at scale

TiDB Project

Overview

Distributed Transactional
Key-value storage

Stateless SQL
instances

Stateless SQL
instances Spark Plugin

Applications

MySQL
Payload

MySQL
Payload

MySQL
Payload

RPC RPC
RPC

SparkSQL & RDD

BI Tools Data scientist

Analytical
workload

Analytical
workload

Overview

Stateless SQL instance

Distributed
Transactional

Key-value storage

TiDB

TiKV
Where the data is actually stored

Spark Plugin

TiSpark

TiKV as a KV engine

A fast KV engine: RocksDB

● Good start! RocksDB is fast and stable.
● Atomic batch write

● Snapshot

● However… It’s a locally embedded KV store.
● Can’t tolerate machine failures

● Scalability depends on the capacity of the disk

Let’s fix Fault Tolerance

● Use Raft to replicate data
● Key features of Raft

● Strong leader: leader does most of the work, issue all log updates

● Leader election

● Membership changes

● Implementation:
● Ported from etcd

● Replicas are distributed across machines/racks/data-centers

Let’s fix Fault Tolerance

Machine 1 Machine 2 Machine 3

RocksDB RocksDB RocksDB

Raft Raft

How about Scalability?

● What if we SPLIT data into many regions?
● We got many Raft groups.

● Region = Contiguous Keys

● Hash partitioning or Range partitioning?
● Redis: Hash partitioning

● HBase: Range partitioning

Range Scan:
Select * from t where c > 10
and c < 100;

Region

● Key: Byte Array

● A globally ordered map
● Can’t use hash partitioning

● Use range partitioning
● Region 1 -> [a - d]

● Region 2 -> [e - h]

● …

● Region n -> [w - z]

● Data is stored/replicated/scheduled in regions

(-∞, +∞)
Sorted Map

Logical Key Space

Meta:
[Start_key,
end_key)

● That’s simple

● Logical split
● Just Split && Move

● Split safely using Raft

How to scale?

Node 1

0

Node 1

1

Scale-out (Add new replica in another node)

Node 1 Node 1

1

Node 1 Node 2

2

0

Scale-out (Remove old replica)

Node 1 Node 1

1

Node 1 Node 2

2

Node 1 Node 2

3

0

TiKV as a distributed KV engine
Client

Store 1

Region 1

Region 3

Region 5

Region 4

Store 3

Region 3

Region 5

Region 2

Store 2

Region 1

Region 3

Region 2

Region 4

Store 4

Region 1

Region 5

Region 2

Region 4

RPC RPC RPC RPC

TiKV node 1 TiKV node 2 TiKV node 3 TiKV node 4

Placement
Driver

PD 1

PD 2

PD 3

Raft
Group

MVCC and Transaction

▪ MVCC
▪ Data layout
▪ key1_version2 -> value
▪ key1_version1 -> value
▪ key2_version3 -> value

▪ Lock-free snapshot reads

▪ Transaction
▪ Inspired by Google Percolator
▪ ‘Almost’ decentralized 2-phase commit

https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Peng.pdf

TiKV: Architecture overview (Logical)

● Highly layered

● Raft for consistency and scalability

● No distributed file system

○ For better performance and lower latency

Transaction

MVCC

RaftKV

Local KV Storage (RocksDB)

Replica Scheduling

Placement Driver
▪ Provide the God’s view of the entire cluster

▪ Store the metadata
▪ Clients have cache of placement information.

▪ Maintain the replication constraint
▪ 3 replicas, by default

▪ Data movement for balancing the workload

▪ It’s a cluster too, of course.
▪ Thanks to Raft.

Placement
Driver

Placement
Driver

Placement
Driver

Raft

Raft

Raft

PD as the cluster manager

Region A

Region B

Node 1

Node 2

PD

Scheduling
Strategy

Cluster
Info

Admin

HeartBeat
with Info

Scheduling
Command

Region C

Config

Movement

Scheduling Strategy

▪ Replica number in a raft group
▪ Replica geo distribution
▪ Read/Write workload
▪ Leaders and followers
▪ Tables and TiKV instances
▪ Other customized scheduling strategy

TiDB as a SQL
database

The SQL Layer

● SQL is simple and very productive

● We want to write code like this:

SELECT COUNT(*) FROM user
WHERE age > 20 and age < 30;

The SQL Layer

▪ Mapping relational model to Key-Value model
▪ Full-featured SQL layer
▪ Cost-based optimizer (CBO)
▪ Distributed execution engine

SQL on KV engine

▪ Row
▪ Key: TableID + RowID
▪ Value: Row Value

▪ Index
▪ Key: TableID + IndexID + Index-Column-Values
▪ Value: RowID

CREATE TABLE `t` (`id` int, `age` int, key `age_idx` (`age`));

INSERT INTO `t` VALUES (100, 35);

K1

K2

10, 35

K1
Encoded Keys:
K1: tid + rowid
K2: tid + idxid + 35

Secondary Index

Pkey Name Email

1 Edward h@pingcap.com

2 Tom tom@pingcap.com

Index Value Pkey

Edward 1

Tom 2

Index Value Pkey

h@pingcap.com 1

tom@pingcap.com 2Data table

Index: Email

Index: Name

SQL on KV engine

▪ Key-Value pairs are byte arrays

▪ Row data and index data are converted into Key-Value

▪ Key should be encoded using the memory-comparable encoding algorithm
▪ compare(a, b) == compare (encode(a), encode(b))

▪ Example: Select * from t where age > 10

Index is just not enough...

▪ Can we push down filters?
▪ select count(*) from person

where age > 20 and age < 30
● It should be much faster, maybe 100x

● Less RPC round trip
● Less transferring data

Distributed Execution Engine

TiKV Node1 TiKV Node2 TiKV Node3

TiDB Server

Region 2Region 1

Region 5

age > 20 and age < 30 age > 20 and age < 30

age > 20 and age < 30
TiDB knows that
Region 1 / 2 / 5
stores the data of
person table.

What about drivers for every language?

● We just build a protocol layer that is compatible with MySQL. Then we have all

the MySQL drivers.
● All the tools

● All the ORMs

● All the applications

● That’s what TiDB does.

Architecture

KV API Coprocessor

Txn, Transaction

MVCC

RawKV, Raft KV

RocksDB

Placement
Driver

MySQL clients

Load Balancer (Optional)

MySQL Protocol

TiDB SQL Layer

KV API
DistSQL

API

TiDB Server
(Stateless)

MySQL Protocol

TiDB SQL Layer

KV API
DistSQL

API

TiDB Server
(Stateless)

Pluggable Storage Engine (e.g. TiKV)

TiSpark (1 / 3)

▪ TiSpark = SparSQL on TiKV

▪ SparkSQL directly on top of a distributed Database Storage

▪ Hybrid Transactional/Analytical Processing(HTAP) rocks

▪ Provide strong OLAP capacity together with TiDB

▪ Spark ecosystem

TiSpark (2 / 3)

TiDB

TiDB

Worker

Spark
Driver

TiKV Cluster (Storage)

Meta data

TiKV TiKV

TiKV

Application

Syncer

Data location

Job

TiSpark

DistSQL API

TiKV

TiDB

TSO/Data location

Worker

Worker

Spark Cluster

TiDB Cluster

TiDB

... ...
...

DistSQL API

PD PD

PD

PD Cluster

TiKV TiKV
TiDB

TiSpark (3 / 3)

▪ TiKV Connector is better than JDBC connector

▪ Index support

▪ Complex Calculation Pushdown

▪ CBO

▪ Pick up the right Access Path

▪ Join Reorder

▪ Priority & Isolation Level

TiDB as a
Cloud-Native
Database

Deploy a database on the cloud

TiDB on Kubernetes

API ServerController ManagerScheduler

Kubernetes Core

TiDB Operator
Deployment

TiDB Cluster Controller PD Controller

TiKV Controller TiDB Controller

GC Controller Volume Manager
DaemonSet

TiDB Scheduler:
Kube Scheduler +
Scheduler Extender
DaemonSet

Cloud TiDB

Users Users Admin

TiDB Cloud
Manager
RESTFul Interface
External Service
manager
Load balancer manager

Cloud TiDB

？

Open Source

Open Source

Roadmap

▪ Multi-tenant

▪ Better Optimizer and Runtime

▪ Performance Improvement

▪ Document Store

▪ Backup & Reload & Migration Tools

Thanks

Q&A

https://github.com/pingcap/tidb

https://github.com/pingcap/tikv

https://github.com/pingcap/pd

https://github.com/pingcap/tispark

https://github.com/pingcap/docs

https://github.com/pingcap/docs-cn

Contact Me: sunhao@pingcap.com

https://github.com/pingcap/tidb
https://github.com/pingcap/tikv
https://github.com/pingcap/pd
https://github.com/pingcap/tispark
https://github.com/pingcap/docs
https://github.com/pingcap/docs

