Study on Kernel Vulnerability
Discovery

Chao Zhang
Tsinghua University

About Me

= Experience

- Tsinghua University, Assoc. Prof., 2016/11-present

- UC Berkeley, Postdoc, 2013/9-2016/9, Advisor: Dawn Song

- Peking University, Ph.D., 2008/9-2013/7, Advisors: 4B , 35
- Peking University, B.S., 2004/9-2008/7, Math

= Honors

- Thousand Youth Talents Plan (&%FA)
- Young Elite Scientists Sponsorship Program by CAST
- Young Talent Development Program by CCF

= Awards

- DARPA CGC, Captain of Team Codelitsu, Defense #1 in 2015, Attack #2 in 2016
- Microsoft BlueHat Prize Contest 2012, Special Recognition Award
- DEFCON CTF, 2015 (#5), 2016 (#2), 2017 (#5)

e e

https://netsec.ccert.edu.cn/chaoz/

B
Consequences of Vulnerabilities

HACKING

D-Link Routers

OPERATION AURORA

How To Respond To The Recent Microsoft Internet Explorer Vulnerability

&
o
v
T
(@]
i
[T
(o)
—
N

i

B
Vulnerability Discovery

= Code Review (10%?)
= Static Analysis
= Dynamic Analysis

- online

- offline
= Taint Analysis
= Symbolic Execution
= Fuzzing (80%?)

- mutation, generation

- blackbox, greybox, whitebox

- smart, dumb

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/

NN
Basics of Fuzzing

bugs u

monitor
Genérator/
Mutator target
program

= generation-based
- generate inputs from templates (e.g., grammar, specification)

= mutation-based
- mutate inputs from seed inputs

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/ 6

B
Basics of Fuzzing: PEACH

= generation-based and mutation-based fuzzing

=relies on user-supplied data and state models

State Models

Data Models State
[Action
(_) [Action]
What is the
structure/format of State
5 your data?) | Acon |

| Action]

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/

Basics of Fuzzing: AFL

A very popular open source mutation-based code coverage guided fuzzer.

Target / S~
: Application /[> Instrument
Y Y
T 3 >
Seed Seed _ .
- . Optimiz Hash Security
Selection Mutation . o
Select Seed >{ seed > Mutate Seed > || Testcases > Test
A

Sec_ahl Identify | _ bitma Report Potential
Pool - Seeds - P Crashes Vulnerabilities

scalable, few knowledge is required ¢ mutation-based

* evolving, code coverage guided * keep only GOOD seeds contributing to cov
e fast, throughput is high » fork, forkserver, persistent, parallel
testing, tracking e gcc_mode, gemu_mode

sensitive, catch security violations * AddressSanitizer, ThreadSanitizer...
20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/ 8

AFL Instrumentation

= gcc_mode, llvm_mode (src required)

update coverage;
code block 1 security sanitizers;
code block 1

update coverage;
code block 2 security sanitizers;
code block 2

update coverage;

code block 1 code block 1

update coverage;
code block 2

code block 2

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/ 9

Kernel Fuzzing

--- syscall fuzzing

BN
Categories

= Knowledge based
= Coverage gquided

201712 A 16 H12/04%) https://netsec.ccert.edu.cn/chaoz/

11

BN
Trinity

= https://github.com/kernelslacker/trinity

= Idea: feed syscall with arguments of correct type
- certain data type
- certain enumeration values
- certain range of values

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/

12

B
IMF; Inferred Model-based Fuzzer (CCS’07)

= Learn from normal testing, to get templates
- order dependency of syscalls
- value dependency of syscalls

= Generate testcases based on templates

N ~
— Logger Fuzzer

: :
]]
' :
API Defs. | : hook !
D_ 1 l Program’ generate |
' :
Program : execAndLog 1 C file !
D_ i compile E
]
Input i Inferrer 'y API Logs Executable H
]]
Q H filter —p> execute :
] v]
] |
of Max Logs (N) : l API Logs’ :
! . crashed™~No 1 |1
' infer ceam |0 ()
| or hang? c P Q
i y Yes) | %
! Model o
@ i rebootAndLog } e I
I . !
Fuzz Conf. | L —>
! Crash Logs !

201712 H 16 H 1257043 13

BN
Categories

= Knowledge based
= Coverage gquided

201712 A 16 H12/04%) https://netsec.ccert.edu.cn/chaoz/

14

EE—————
syzkaller (AFL gcc_mode)

= Instrument the kernel (via compilation) with
- code coverage tracking

- security violation checking

= Multiple VM could be parallelized

1&

QEMU

Seed identify
Pool seeds

select mutate test- N
seed seed cases '

kernel

syz-executor

SHM (coverage info):
/sys/kernel/debug/kcov

syscall

(specific version compiled with specific GCC)
coverage tracking, security violation checkers

20174F12 H 16 H 121504y

https://netsec.ccert.edu.cn/chaoz/

15

TriforceAFL (AFL gemu_mode)

= A modified version of AFL that supports kernel fuzzing
with QEMU full-system emulation.

mutate I(
seed N

select
seed

A

Seed identify
Pool seeds

201712 H 16 H 1257043

forkserver

VM snapshot fork

QEMU

hyperCall fuzz driver

sl (userland)
cov track

kernel

https://netsec.ccert.edu.cn/chaoz/ 16

B
kKAFL: Hardware-Assisted (USENIX Sec’07)

. . Fast Crash Tolerant |OS Independent| Binary Only
= Motivation
TriforceAFL
(Jesse Hertz & Tim Newsham, X 4 v
NCC Group)
Syzkaller
(Dmitry Vyukov) v 4 X X
AFL Filesystem Fuzzer
(Vegard Nossum & Quentin v X X
Casanovas, Oracle)
PT K IF
(Richasdr?;nsotrl\,z%ﬁ:s) 4 X X 4
[|
S O I u t | O n Guest Ring-0 Tracing
o (Fuzzing-Process & Target Range)
- track coverage via Intel PT —
oS
- track only kernel code .
= vCPU, su pervisor Virtual Machine

= process, IP range

- QEMU+KVM ("permar) | (__Kemel]

cove+rage T
40X faster than Triforce [Fuzzer }*[Agent] |-

2017512 H16 H 12157 04) https://netsec.ccert.¢ 17

Improve fuzzing

Target / -
/ Application / > Instrument

Y
Seed Seed L .
Selection Mutation Of({t'm'z ;llash SSe(;yrlty
Strategy Strategy ations gor. anitizers
> d > > - Track
Select Seed > see > Mutate Seed —>{|| 1oqtcases > Test > Y Y
—"" - |Coverage| | Security |
A
Y Y

Seed 2 _ ldentify | _ q;n . Report Potential
Pool - Seeds - P Crashes Vulnerabilities

EEENSSNNN
Questions of Cov-guided Fuzzing

= How to get initial inputs?
= How to select seed from the pool?

 How to generate new testcases?

- How to mutate seeds? Location and value.

= How to test target application?

- efficiency, input sources, coverage, ...

= How to track the testing?

- code coverage, security violation, ...?

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/

20

B
How to get initial inputs?

= Why is it important?

- Cpu time

- complex data structure

- hard-to-reach code

- reusable between fuzzings
= Solutions

- standard benchmarks

- crawling from the Internet

- existing PoC samples

= Extra step
- distill the corpus

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/

B
How to select seed from the pool?

= Why is it important?
- prioritize seeds which are more helpful,

= e.g., cover more code, more likely to trigger vulnerabilities

- save computing resources

- faster to identify hidden vulnerabilities
= Solutions

- AFLFast (CCS’16): seeds exercising less-frequent paths or picked fewer
- Vuzzer (NDSS’17): seeds exercising deeper paths

- QTEP (FSE’17): seeds covering more faulty code

- AFLgo (CCS’17): seeds closer to target vulnerable paths

- SlowFuzz (CCS’17): seeds consuming more resources

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/ 22

EE—————
How to generate new testcases?

= Why is it important?
- explore more code in a shorter time

- target potential vulnerable locations

= Solutions
- Vuzzer (NDSS" 17):
= where to mutate: bytes related to branches
= what value to use: tokens used in the code.
- Skyfire (Oakland’ 17):
= learn Probabilistic Context-Sensitive Grammar from crawled inputs
- Learn&Fuzz (Microsoft, 2017/2):

= learn RNN from valid inputs

- Neural Fuzzing (Microsoft, 2017/11)
= predicate which bytes to mutate via LSTM

- GAN Fuzzing (2017/11)

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/

BN
How to efficiently test application?

=Why is it important?
- test more in a unit time
- very important

= Efficiency: = Input sources:
- fork + execve - stdio
- forkserver - file
- persistent mode - network
- parallel mode - GUI

. Intel PT - managed code

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/ 24

EE————
How to track the testing?
= Why is it important?

- Code coverage: leading to thorough program states exploring

- Security violations: capturing bugs that have no explicit results

= Code coverage: : Security violations:
. AFL bitmap = AddressSanitizer
= UBSan

- SanitizerCoverage

, , MemorySanitizer
- code instrumentation

ThreadSanitizer

= source code
DataFlowsanitizer

= binary code, gemu_mode
= LeakSanitizer

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/ 25

B
Fuzzing in real world

Dumb enough, easy to use, but effective!
- VERY popular in industry

= Key to find more vulnerabilities

- domain knowledge

- write your own mutation algorithm for your target
application

415

m|

-1 ERRITREIR

II’_

201712 H 16 H 1257043

ES

https://netsec.ccert.edu.cn/chaoz

E— ANEIE— —1a
/ﬁﬂ (K522 PPT) | FEBIATFF

TR

/

RSN

11

26

B
Conclusions

= Fuzzing is the most popular vulnerability
discovery solution.

= AFL is one of the most popular fuzzers,

studied by academia and industry researchers.

- scalable, fast, evolving, sensitive

= Kernel fuzzing attracts more and more
attentions.

«We could improve fuzzers in many ways.

20174FE12 H 16 H12K10%) https://netsec.ccert.edu.cn/chaoz/

27

P &L #

