
Experiences with Building 
High-Performance Distrusted 
Block Storage at SmartX

张凯 CTO at SmartX



Agenda

• Background & challenges

• Architecture of SmartX ZBS

• Experiences with SmartX ZBS

• Roadmap



About SmartX

– Founded by three geeks in 2013

– Focused on distributed systems and virtualization

– Leading Chinese HCI technology and market

– Product has been deployed on thousands of hosts and 
running for 2 years

– Cooperate with Chinese leading hardware venders and cloud 
venders

– Has now raised 10s of millions of dollars



About Me

– Computer Science, Tsinghua University

– Software Engineer, Infrastructure Team, Baidu

– Cofounder & CTO, SmartX

– Contributor, Sheepdog



Agenda

• Background & challenges

• Architecture of SmartX ZBS

• Experiences with SmartX ZBS

• Roadmap



Why Block Storage Matters

• Different kinds of storage
– Block: used by hypervisor like esxi, kvm and xen

– File: HPC and shared workspace

– Object: store small files like image and voice

• Block storage stores most valuable data
– Applications: database, mail server, VDI, AD, …

– Industries: finance, bank, manufacture, hospital, …

• The value of storage system is determined by 
the value of data it stores



Why Block Storage Matters

• Highest resiliency requirement
– No single point of failure, self healing

– Data checksum, efficient snapshot, disaster recovery

• Highest performance requirement
– Normally less than 1ms response time, more than 1GBps 

bandwidth, 5k IOPS per database instance

– No performance cliff

• Scalability & agility
– Deployment, scaling, shipment



Traditional Storage Sucks in Cloud



Traditional Storage Sucks in Cloud

• Pros of traditional storage
– Run well in small size

– Mature product

• Cons of traditional storage
– Scale-up architecture, not scale-out

– Customized hardware, too long to acquire and hard to 
deployment

– Expensive



We Need Cloud-Native Storage



We Need Cloud-Native Storage

• Pros of SDS
– Scale-out

– Commodity hardware

• Cons of SDS
– Hard to management



Hyper-Converged Infrastructure

The core technology of HCI is SDS



Hyper-Converged Infrastructure

• Avoid network latency by accessing data locally

• Unified compute node and storage node

• Less space and power consumption

• Easy to management
– Appliance with VM management, SDS, SDN, hardware 

management …



HCI Challenges

• Limited resources
– About 10% of host

– Typically: 4 vCPU and 8GB memory for SDS

• Commodity hardware
– Not reliable as customized hardware

– No NVRAM

– No RAID controller



Agenda

• Background & challenges

• Architecture of SmartX ZBS

• Experiences with SmartX ZBS

• Roadmap



Architecture of SmartX ZBS

• Zookeeper: 
– Cluster consistency

• Meta Server: 
– Meta data management

– LevelDB + Zookeeper

• Access Server
– iSCSI & NFS gateway

– High availability

• Chunk Server
– Userspace filesystem

– Local data consistency



ZBS Data Structure

• Provision unit of Chunk Server

• Provision unit of Meta Server

• Storage policy container:
– Replication factor
– Thin provision
– Access control



ZBS Highlight Features

• High efficiency
– 2 vcpu and 4GB memory for Access Server and Chunk Server

– 2 vcpu and 4GB memory for Meta Server, Zookeeper and 
others

– Better performance than Ceph with same hardware while 10
times resource consumption less than Ceph

• Data protection
– Replication

– Snapshot, clone

– Metro-availability

– Data checksum



ZBS Highlight Features

• iSCSI/NFS gateway
– Accessible on every node

– Access locally by default

– Reroute to remote when local failure

• Open ecosystem
– Support esxi, kvm, xen and container

– Support VMware VAAI, Citrix Ready, Openstack, Kubernetes



Data Flow (iSCSI)



Agenda

• Background & challenges

• Architecture of SmartX ZBS

• Experiences with SmartX ZBS

• Roadmap



Experiences with SmartX ZBS

• IO performance optimization

• Asynchronous programming framework with 
coroutine



About Disk IO Performance

• Reduce write amplification

• Explore flash parallelism



Write Amplification

• Logs on logs on logs …
– LevelDB/RocksDB: write ahead log

– Ext4: journaling

– FTL: log structured



How Much Write Amplified

https://arxiv.org/pdf/1707.08514.pdf
https://www.usenix.org/system/files/conference/f
ast16/fast16-papers-lu.pdf

Leveldb Filesystems



How ZBS reduce write amplification

• Don’t use LevelDB/RocksDB for data

• Bypass kernel filesystem
– Avoid performance overhead

– Manage multiple devices in userspace

– Use flash as cache and journal

• Don’t journal data for sequential write
– Allocate new blocks



IO Pattern Recognization



Multiple Journals

• Extents are hashed 
into workers

• Each worker has an 
individual journal



Experiences with SmartX ZBS

• IO performance optimization

• Asynchronous programming framework with 
coroutine



What is Coroutine

• Each coroutine has an individual context

• Non-preemptive

• One thread may run many coroutines

• Write asynchronous program in synchronous way



RPC Example with Coroutine

• No malloc()/free()

• No explicit yielding

• Asynchronous IO



Behind RPC Example



Coroutine at SmartX

• Features
– Stackfulness and Symmetric

– Individual stack space: 128KB

– Protection of stack overflow by mprotect()

– Stack pool per thread to avoid frequently malloc/free

– siglongjmp() instead of swapcontext()

• Performance
– Construct & deconstruct: 131ns

– Switch in & out: 67ns



Coroutine with Threading

• Wrap thread as ThreadContext
– Thread

– EventLoop

• Coroutine is schedule between threads

• Each function call is an opportunity of 
scheduling



Coroutine with Threading

• Constructor
– Schedule to 

specified thread of 
thread pool

• Deconstructor
– Schedule back to 

original thread



Agenda

• Background & challenges

• Architecture of SmartX ZBS

• Experiences with SmartX ZBS

• Roadmap



Roadmap

• Next generation userspace storage manager
– Kernel bypass: DPDK + SPDK

– Inline compression

– Inline deduplication

– Support faster device

• Data protection for multiple datacenters



We are Hiring J

jobs@smartx.com


