
Rust Quick Tutorial

Wenxuan Shi @ PingCAP

● Infrastructure Engineer @ PingCAP

● TiKV team

About Me

Rust

Wikipedia: “Rust is a systems programming language sponsored by Mozilla which
describes it as a "safe, concurrent, practical language," supporting functional and
imperative-procedural paradigms. Rust is syntactically similar to C++, but its
designers intend it to provide better memory safety while still maintaining
performance.”

The Most Loved Language

Rust Applications

● A good replacement for C / C++

● Performance critical applications

● Suitable for system programming

○ Databases

○ Web Servers

○ Browsers → Firefox Servo

○ Game Engines

○ Web Assembly 🔥

○ Operating Systems → CS140e

○ Compilers

● Steep learning curve. Writing a A+B in Rust is much harder than in C++.

● Maybe too rigorous and too explicit for toy projects.

● Develop not fast as script languages.

● Community is not mature.

● Documentations and materials are limited.

● ……

Disadvantages

1. Use rustup to install Rust toolchains (compilers, docs, cargo, etc): https://rustup.rs/

2. Use cargo to manage your project:

○ Create project directory: cargo new my_fancy_project

○ Specify dependencies: Cargo.toml

○ Build: cargo build

○ Run tests: cargo test

○ Run application: cargo run

Let's Getting Started

https://rustup.rs/

Rust A+B

Rust A+B

Immutable by default. Mutable variables needs explicit keyword.

Rust A+B

Variable type can be inferred. Like auto in C++11.

Rust A+B

There are references
(immutable by default as well).

Rust A+B

Functional programming style.

Rust A+B

Closure.

Rust A+B
Generic trait: Parse to what type?

Rust A+B

Output to stdout.

Rust A+B

The macro enables string
formatting at compile time.

Rust A+B

Rust’s error handling style.

● zero-cost abstractions

● move semantics

● guaranteed memory safety

● threads without data races

● trait-based generics

● pattern matching

● type inference

● minimal runtime

● efficient C bindings

Rust Features

● Rust’s most unique feature

● Achieve memory safe without GC

● Move semantics

● Rules:

○ Each value in Rust has a variable that’s called its owner.

○ There can only be one owner at a time.

○ When the owner goes out of scope, the value will be dropped.

Ownership

Move Ownership

Move Ownership

（1） （2） （3）

Typical C++ World Disaster (Double Free)

class String {
 char * ptr;
 int len;
 int capacity;
}

free(s1);
free(s2);

What if we..

This will not happen in Rust.

Protected by Rust Compiler ™.

Borrow

● Borrow by using reference operator.

● Rules:

○ At any given time, you can have either one mutable reference or any number of immutable

references.

○ References must always be valid.

Typical C++ World Disaster: Data Race

This will not happen in Rust.

Protected by Rust Compiler ™.

Compile Error:

Lifetime

● A variable's lifetime begins when it is created and ends when it is destroyed.

● Each reference is bounded to a lifetime.

● Ensures that all references are valid.

● Long lifetime references cannot be made from a shorter lifetime variable.

● Short lifetime references cannot be passed to a longer lifetime scope.

Typical C++ World Disaster: Dangling Pointer

Life time too short!

This will not happen in Rust.

Protected by Rust Compiler ™.

Compile Error:

Typical C++ World Disaster: Dangling Pointer

Life time too short!

This will not happen in Rust.

Protected by Rust Compiler ™.

Compile Error:

Specify Lifetime

← Cannot infer life time

Follow the official Rust book:

https://doc.rust-lang.org/stable/book/second-edition/

Learn More

https://doc.rust-lang.org/stable/book/second-edition/

Thank You !

We are hiring!

hire@pingcap.com

Contact me:

breezewish@pingcap.com

mailto:hire@pingcap.com
mailto:breezewish@pingcap.com

