
Rust Practice in TiKV
Wenxuan Shi

About Me & PingCAP

● TiKV Infrastructure Engineer

● HTAP & NewSQL Database

● CNCF

● Open source

RDBMS
NoSQL

NewSQL

1970
2010

2015
Present

MySQL
PgSQL
Oracle
DB2
...

Redis
HBase
Cassandra
MongoDB

Spanner
F1
TiDB

Architecture

Applications

MySQL Drivers

TiDB Stateless SQL Computation Layer

Distributed KV Storage

TiDB TiDB

TiKV TiKVTiKVTiKV

We Use Rust for...

Performance

Memory
Safe

No Data Race

Efficient
FFI

We Use Rust for...

Language Performance Coding Difficulty Rigor Safeness

C / C++ Very High Difficult Rigorous No

Golang Normal Easy Free Some

Rust Very High Difficult Very Rigorous High

Rust Version

Rust 2015

Nightly

● Impl Trait (Rust 1.26)

○ Return unnameable types, like closures

Rust Version

Rust 2015

Nightly

● Impl Trait (Rust 1.26)

○ Return unnameable types, like closures

What’s the type??

Rust Version

Rust 2015

Nightly

● Impl Trait (Rust 1.26)

○ Return unnameable types, like closures I don’t care!

Rust Version

Rust 2015

Nightly

● Procedural Macro / Custom Derive (Rust 1.30)

○ Meta programming via Rust language!

Rust Version

Rust 2015

Nightly

● Procedural Macro / Custom Derive (Rust 1.30)

○ Meta programming via Rust language!

Rust Version

Rust 2015

Nightly

● Procedural Macro / Custom Derive (Rust 1.30)

○ Meta programming via Rust language!

Rust Version

Rust 2015

Nightly
Rust 2018

● We are moving forward to to Rust 2018!

● Learn more:

https://rust-lang-nursery.github.io/edition-guide

https://rust-lang-nursery.github.io/edition-guide

Code Style & Quality

● Formatter: rustfmt
https://github.com/rust-lang/rustfmt

● (Advanced) linter: rust-clippy
https://github.com/rust-lang/rust-clippy

https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rust-clippy

Code Style & Quality

● Of course not all lint rules are suitable for us, like...

The ideal form Clippy suggests...

Workspaces

Workspaces

● More modular

● Speed up benchmark & test compiling

a. Prevent linking a large code base

b. Unchanged crates doesn’t need to be recompiled

● Friendly to RLS

More coming!

Workspaces

Macros

● More DRY: Auto generate codes in some pattern

● Sometimes types and lifetimes are just hard to write :)

● Defects:

○ IDE unfriendly

○ Hard to debug when issues occurs inside macro

■ You can let compiler expand the macro

Macros

Standard way

Macro way

Procedural Macros

● Handling more complicated cases

● It have to be a standalone crate!

○ Use workspace to place it with other things together

Procedural Macros

● Efficient Codec

Unsafe

● Fast Memory Access (without bounding check)

Unsafe

● Fast Memory Access (without bounding check)

Unsafe

● LLVM Intrinsics

Unsafe

Generics & Zero Cost Abstraction

RocksDB StoreRaft Store Mock Store

fn get(store: Box<Store>, key: &[u8]) {}

Solution 1. Trait Object

Generics & Zero Cost Abstraction

RocksDB StoreRaft Store Mock Store

fn get<S: Store>(store: S, key: &[u8]) {}

Solution 2. Generic
(efficient)

Generics & Zero Cost Abstraction

RocksDB StoreRaft Store Mock Store

fn get(store: impl Store, key: &[u8]) {}

Solution 3. Impl Trait
(efficient)

Generics & Zero Cost Abstraction

● Eliminate Box<T> in dynamic cases

TableScan
IndexScan Filter Top N

SELECT * FROM Goods WHERE price > 100

next() next() next()

trait Executor {
 fn next(...);
}

The combination is unknown at compile time

Generics & Zero Cost Abstraction

● Instead of JIT, we can...

struct TableScan;
struct IndexScan;
struct Filter<Src: Executor>;
struct TopN<Src: Executor>;

let common_pattern_1: TopN<Filter<TableScan>> = ...;
let common_pattern_2: TopN<IndexScan> = ...;

let uncommon_pattern: Box<Executor> = ...;

Generics & Zero Cost Abstraction

● Eliminate branches

Generics & Zero Cost Abstraction

Thank You !

We are hiring!

hire@pingcap.com

Contact me:

breezewish@pingcap.com

mailto:hire@pingcap.com
mailto:breezewish@pingcap.com

