
1

Acknowledgement

• This lecture is extended and modified from
lecture notes by:
– Dr. Cliff Zou: CAP6135/CIS3360 courses

– Dr. Yan Chen: EECS350 course

– Dr. Nickolai Zeldovich: 6.858 course

– Dr. Dang Song: CS161 course

– Dr. Marco Cova 20009/20010 courses

Contents

• Stack Overflow Overview

• What causes buffer overflow?

• Stack Overflow Defense

3

• Stack Overflow Overview

4

The Problem

void foo(char *s) {

 char buf[10];

 strcpy(buf,s);

 printf(“buf is %s\n”,s);

}

…

foo(“thisstringistolongforfoo”);

5

Exploitation

• The general idea is to give servers very large strings
that will overflow a buffer.

• For a server with sloppy code – it’s easy to crash the
server by overflowing a buffer.

• It’s sometimes possible to actually make the server
do whatever you want (instead of crashing).

6

Necessary Background

• C functions and the stack.

• A little knowledge of assembly/machine
language.

• How system calls are made (at the level of
machine code level).

• exec() system calls

– How to “guess” some key parameters.

7

What is a Buffer Overflow?

• Intent
– Arbitrary code execution

• Spawn a remote shell or infect with worm/virus

– Denial of service
• Cause software to crash

– E.g., ping of death attack

• Steps
– Inject attack code into buffer

– Overflow return address

– Redirect control flow to attack code

– Execute attack code

8

Attack Possibilities

• Targets
– Stack, heap, static area

– Parameter modification (non-pointer data)
• Change parameters for existing call to exec()

• Change privilege control variable

• Injected code vs. existing code

• Absolute vs. relative address dependence

• Related Attacks
– Integer overflows

– Format-string attacks

9

Address Space

0x00000000

0x08048000 code

static data

bss

heap

shared library

stack

kernel space

0x42000000

0xC0000000

0xFFFFFFFF

From Dawn Song’s RISE: http://research.microsoft.com/projects/SWSecInstitute/slides/Song.ppt

10

C Call Stack

• C Call Stack

– When a function call is made, the return address
is put on the stack.

– Often the values of parameters are put on the
stack.

– Usually the function saves the stack frame pointer
(on the stack).

– Local variables are on the stack.

11

A Stack Frame

Parameters

Return Address

Calling Stack Pointer

Local Variables

00000000

Addresses

SP

SP+offset

SP: stack pointer BP: base/frame pointer

BP

12

Sample
Stack

18

addressof(y=3) return address

saved stack pointer

buf

y

x

x=2;

foo(18);

y=3;

void foo(int j) {

 int x,y;

 char buf[100];

 x=j;

 …

}

13

“Smashing the Stack”*

• The general idea is to overflow a buffer so
that it overwrites the return address.

• When the function is done it will jump to
whatever address is on the stack.

• We put some code in the buffer and set the
return address to point to it!

*taken from the title of an article in Phrack 49-7

14

Before and After
void foo(char *s) {

 char buf[100];

 strcpy(buf,s);

 …

address of s

return-address

saved sp

buf

address of s

pointer to pgm

Small Program

15

• What causes buffer overflow?

16

Example: gets()

char buf[20];

gets(buf); // read user input until

 // first EoL or EoF character

• Never use gets

• Use fgets(buf, size, stdout) instead

17

Example: strcpy()

char dest[20];

strcpy(dest, src); // copies string src to dest

• strcpy assumes dest is long enough , and
assumes src is null-terminated

• Use strncpy(dest, src, size) instead

18

Spot the defect! (1)

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix);

 // copies the string prefix to buf

strncat(buf, path, sizeof(buf));

 // concatenates path to the string buf

19

Spot the defect! (1)

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix);

 // copies the string prefix to buf

strncat(buf, path, sizeof(buf));

 // concatenates path to the string buf

strncat’s 3rd parameter is number of

chars to copy, not the buffer size

Another common mistake is giving sizeof(path) as 3rd argument...

20

Spot the defect! (2)

char src[9];

char dest[9];

char base_url = ”www.ru.nl”;

strncpy(src, base_url, 9);

 // copies base_url to src

strcpy(dest, src);

 // copies src to dest

base_url is 10 chars long, incl. its

null terminator, so src won’t be

not null-terminated

so strcpy will overrun the buffer dest

21

Example: strcpy and strncpy

• Don’t replace strcpy(dest, src) by
– strncpy(dest, src, sizeof(dest))

• but by
– strncpy(dest, src, sizeof(dest)-1)
– dest[sizeof(dest)-1] = `\0`;
– if dest should be null-terminated!

• A strongly typed programming language could of
course enforce that strings are always null-
terminated...

22

Spot the defect! (3)

char *buf;

int i, len;

read(fd, &len, sizeof(len));

buf = malloc(len);

read(fd,buf,len);

23

Spot the defect! (3)

char *buf;

int i, len;

read(fd, &len, sizeof(len));

buf = malloc(len);

read(fd,buf,len);

• Memcpy() prototype:
– void *memcpy(void *dest, const void *src, size_t n);

• Definition of size_t: typedef unsigned int size_t;

Didn’t check if negative

len cast to unsigned and negative

length overflows

24

Implicit Casting Bug

• A signed/unsigned or an implicit casting bug

– Very nasty – hard to spot

• C compiler doesn’t warn about type
mismatch between signed int and unsigned
int

– Silently inserts an implicit cast

25

Spot the defect! (4)

char *buf;
int i, len;
read(fd, &len, sizeof(len));
if (len < 0)
 {error ("negative length"); return; }
buf = malloc(len+5);
read(fd,buf,len);
buf[len] = '\0'; // null terminate buf

May results in integer overflow

26

Spot the defect! (5)

#define MAX_BUF = 256

void BadCode (char* input)

 { short len;

 char buf[MAX_BUF];

 len = strlen(input);

 if (len < MAX_BUF)

 strcpy(buf,input);

 }

What if input is longer

than 32K ?

len will be a negative

number,

due to integer overflow

hence: potential buffer

overflow

27

Spot the defect! (6)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure it’s a valid URL and will fit

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

 // skip spaces

 if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buff2, buff1);

...

what if there is no ‘/’ in the URL?

Loop termination (exploited by Blaster worm)

28

Spot the defect! (7)

#include <stdio.h>

int main(int argc, char* argv[])

{ if (argc > 1)

printf(argv[1]);

return 0;

}

This program is vulnerable to format string attacks,
where calling the program with strings containing
special characters can result in a buffer overflow
attack.

29

Format String Attacks

• int printf(const char *format [, argument]…);

– snprintf, wsprintf …

• What may happen if we execute

 printf(string);

– Where string is user-supplied ?

– If it contains special characters, eg %s, %x, %n,
%hn?

Format String Attacks

• Why this could happen?

– Many programs delay output message for batch
display:

– fprintf(STDOUT, err_msg);

– Where the err_msg is composed based on user
inputs

– If a user can change err_msg freely, format string
attack is possible

30

31

Format String Attacks

• %x reads and prints 4 bytes from stack
– this may leak sensitive data

• %n writes the number of characters printed so
far onto the stack
– this allow stack overflow attacks...

• C format strings break the “don’t mix data &
code” principle.

• “Easy” to spot & fix:
– replace printf(str) by printf(“%s”, str)

Use Unix Machine in Department

• The Unix machine: eustis.eecs.ucf.edu

• Must use SSH to connect
– Find free SSH clients on Internet

• E.g., Putty (command line based)

• http://en.wikipedia.org/wiki/Ssh_client

• Find a GUI-based SSH client

• Username: NID

• Default password:
the first initial of your last name in uppercase and
the last 5 digits of your PID

32

http://en.wikipedia.org/wiki/Ssh_client

33

Example of “%x” --- Memory leaking

#include <stdio.h>

void main(int argc, char **argv){

 int a1=1; int a2=2;

 int a3=3; int a4=4;

 printf(argv[1]);

}

czou@:~$./test

czou@eustis:~$./test "what is this?"

what is this?czou@eustis:~$

czou@eustis:~$

czou@eustis:~$./test "%x %x %x %x %x %x"

4 3 2 1 bfc994b0 bfc99508czou@eustis:~$

czou@eustis:~$

Bfc994b0: saved stack pointer

Bfc99508: return address

#include <stdio.h>

void foo(char *format){

 int a1=11; int a2=12;

 int a3=13; int a4=14;

 printf(format);

}

void main(int argc, char **argv){

 foo(argv[1]);

 printf("\n");

}

$./format-x-subfun "%x %x %x %x : %x, %x, %x "

80495bc e d c : b, bffff7e8, 80483f4

34
Return address Four variables

35

• What does this string (“%x:%x:%s”) do?

– Prints first two words of stack memory

– Treats next stack memory word as memory addr
and prints everything until first '\0‘

• Could segment fault if goes to other program’s
memory

36

• Use obscure format specifier (%n) to write any
value to any address in the victim’s memory
– %n --- write 4 bytes at once

– %hn --- write 2 bytes at once

• Enables attackers to mount malicious code
injection attacks
– Introduce code anywhere into victim’s memory

– Use format string bug to overwrite return address on
stack (or a function pointer) with pointer to
malicious code

Example of “%n”---- write data in memory

#include <stdio.h>

void main(int argc, char **argv){

 int bytes;

 printf(“%s%n\n”, argv[1], &bytes);

 printf(“You input %d characters\n”, bytes);

}

$./test hello

hello

You input 5 characters

37

Function Pointer Overwritten

• Function pointers: (used in attack on PHP
4.0.2)

– Overflowing buf will override function pointer.

– Harder to defend than return-address overflow
attacks

38

High addr.

Of stack buf[128] FuncPtr

Test by Yourself

#include <stdio.h>

void main(void){

 /* short x = 32767;*/

 unsigned short x = 65535;

 x = x +1;

 printf("x= %d\n", x);

}

• Try to run it to see how overflow happens.
– Modify the x definition to see other integer overflow

cases

39

Buffer Overflow Defense

40

41

Countermeasures

• We can take countermeasures at different
points in time
– before we even begin programming

– during development

– when testing

– when executing code

• to prevent, to detect – at (pre)compile time or
at runtime -, and to migitate problems with
buffer overflows

Preventing Buffer Overflow Attacks

• Non-executable stack

• Static source code analysis.

• Run time checking: StackGuard, Libsafe, SafeC,
(Purify).

• Randomization.

• Type safe languages (Java, ML).

• Detection deviation of program behavior

• Sandboxing

• Access control …

42

43

Prevention

• Don’t use C or C++ (use type-safe language)
– Legacy code
– Practical?

• Better programmer awareness & training
– Building Secure Software, J. Viega & G. McGraw, 2002
– Writing Secure Code, M. Howard & D. LeBlanc, 2002
– 19 deadly sins of software security, M. Howard, D LeBlanc

& J. Viega, 2005
– Secure programming for Linux and UNIX HOWTO, D.

Wheeler, www.dwheeler.com/secure-programs
– Secure C coding, T. Sirainen

www.irccrew.org/~cras/security/c-guide.html

http://www.dwheeler.com/secure-programs
http://www.dwheeler.com/secure-programs
http://www.dwheeler.com/secure-programs
http://www.irccrew.org/~cras/security/c-guide.html
http://www.irccrew.org/~cras/security/c-guide.html
http://www.irccrew.org/~cras/security/c-guide.html

44

Dangerous C system calls
source: Building secure software, J. Viega & G. McGraw, 2002

45

Secure Coding

• Avoid risky programming constructs
– Use fgets instead of gets

– Use strn* APIs instead of str* APIs

– Use snprintf instead of sprintf and vsprintf

– scanf & printf: use format strings

• Never assume anything about inputs
– Negative value, big value

– Very long strings

46

Prevention – use better string libraries

• there is a choice between using statically vs
dynamically allocated buffers

– static approach easy to get wrong, and chopping
user input may still have unwanted effects

– dynamic approach susceptible to out-of-memory
errors, and need for failing safely

47

Better string libraries

• libsafe.h provides safer, modified versions of eg strcpy

• strlcpy(dst,src,size) and strlcat(dst,src,size) with size the size
of dst, not the maximum length copied.
– Used in OpenBSD

• glib.h provides Gstring type for dynamically growing null-
terminated strings in C
– but failure to allocate will result in crash that cannot be intercepted,

which may not be acceptable

• Strsafe.h by Microsoft guarantees null-termination and
always takes destination size as argument

• C++ string class
– data() and c-str()return low level C strings, ie char*, with result of

data()is not always null-terminated on all platforms...

48

Dynamic countermeasures

• Protection by kernel
– Non-executable stack memory (NOEXEC)

• prevents attacker executing her code

– Address space layout randomisation (ASLR)
• generally makes attacker's life harder

– E.g., harder to get return address place and injected code
address

• Protection inserted by the compiler
– to prevent or detect malicious changes to the

stack

• Neither prevents against heap overflows

Bugs to Detect in Source Code Analysis

49

 Some examples

• Crash Causing Defects

• Null pointer dereference

• Use after free

• Double free

• Array indexing errors

• Mismatched array new/delete

• Potential stack overrun

• Potential heap overrun

• Return pointers to local variables

• Logically inconsistent code

• Uninitialized variables

• Invalid use of negative values

• Passing large parameters by value

• Underallocations of dynamic data

• Memory leaks

• File handle leaks

• Network resource leaks

• Unused values

• Unhandled return codes

• Use of invalid iterators

50

Marking stack as non-execute

• Basic stack exploit can be prevented by marking
stack segment as non-executable or randomizing
stack location.
– Then injected code on stack cannot run
– Code patches exist for Linux and Solaris

• E.g., our olympus.eecs.ucf.edu has patched for stack
radnomization

• Problems:
– Does not block more general overflow exploits:

• Overflow on heap, overflow func pointer

– Does not defend against `return-to-libc’ exploit.
– Some apps need executable stack (e.g. LISP interpreters).

51

Randomization Techniques

• For successful exploit, the attacker needs to know
where to jump to, i.e.,
– Stack layout for stack smashing attacks
– Heap layout for code injection in heap
– Shared library entry points for exploits using shared

library

• Randomization Techniques for Software Security
– Randomize system internal details

• Memory layout
• Internal interfaces

– Improve software system security
• Reduce attacker knowledge of system detail to thwart exploit
• Level of indirection as access control

52

Randomize Memory Layout (I)

• Randomize stack starting point

– Modify execve() system call in Linux kernel

– Similar techniques apply to randomize heap
starting point

• Randomize heap starting point

• Randomize variable layout

53

Randomize Memory Layout (II)

• Handle a variety of memory safety vulnerabilities
– Buffer overruns
– Format string vulnerabilities
– Integer overflow
– Double free

• Simple & Efficient
– Extremely low performance overhead

• Problems
– Attacks can still happen

• Overwrite data
• May crash the program

– Attacks may learn the randomization secret
• Format string attacks

54

Dynamic countermeasure: stackGuard

• Solution: StackGuard

– Run time tests for stack integrity.

– Embed “canaries” in stack frames and verify their
integrity prior to function return.

55

Canary Types

• Random canary:

– Choose random string at program startup.

– Insert canary string into every stack frame.

– Verify canary before returning from function.

– To corrupt random canary, attacker must learn
the random string.

56

Canary Types

• Additional countermeasures:

– use a random value for the canary

– XOR this random value with the return address

– include string termination characters in the canary
value (why?)

57

• StackGuard implemented as a GCC patch

– Program must be recompiled

• Low performance effects: 8% foR Apache

• Problem

– Only protect stack activation record (return
address, saved ebp value)

58

Purify

• A tool that developers and testers use to find
memory leaks and access errors.

• Detects the following at the point of
occurrence:

– reads or writes to freed memory.

– reads or writes beyond an array boundary.

– reads from uninitialized memory.

59

Purify - Catching Array Bounds Violations

• To catch array bounds violations, Purify allocates a
small "red-zone" at the beginning and end of each
block returned by malloc.

• The bytes in the red-zone  recorded as
unallocated.

• If a program accesses these bytes, Purify signals an
array bounds error.

• Problem:
– Does not check things on the stack

– Extremely expensive

60

Further improvements

• PointGuard
– also protects other data values, eg function pointers,

with canaries
• Higher performance impact than stackGuard

• ProPolice's Stack Smashing Protection (SSP) by
IBM
– also re-orders stack elements to reduce potential for

trouble

• Stackshield has a special stack for return
addresses, and can disallow function pointers to
the data segment

61

Dynamic countermeasures

• libsafe library prevents buffer overruns
beyond current stack frame in the dangerous
functions it redefines

– Dynamically loaded library.

– Intercepts calls to strcpy (dest, src)

• Validates sufficient space in current stack frame:
 |frame-pointer – dest| > strlen(src)

• If so, does strcpy.
Otherwise, terminates application.

Dynamic countermeasures

• libverify enhancement of libsafe keeps copies
of the stack return address on the heap, and
checks if these match

62

63

• None of these protections are perfect!
– even if attacks to return addresses are caught,

integrity of other data other than the stack can
still be abused

– clever attacks may leave canaries intact

– where do you store the "master" canary value
• a cleverer attack could change it

– none of this protects against heap overflows
• eg buffer overflow within a struct...

– New proposed non-control attack

64

Summary

• Buffer overflows are the top security vulnerability

• Any C(++) code acting on untrusted input is at risk

• Getting rid of buffer overflow weaknesses in C(++)
code is hard (and may prove to be impossible)
– Ongoing arms race between countermeasures and ever

more clever attacks.

– Attacks are not only getting cleverer, using them is getting
easier

