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The Problem 

void foo(char *s) { 

 char buf[10]; 

 strcpy(buf,s); 

 printf(“buf is %s\n”,s); 

} 

… 

foo(“thisstringistolongforfoo”); 
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Exploitation 

• The general idea is to give servers very large strings 
that will overflow a buffer. 

 

• For a server with sloppy code – it’s easy to crash the 
server by overflowing a buffer. 

 

• It’s sometimes possible to actually make the server 
do whatever you want (instead of crashing). 
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Necessary Background 

• C functions and the stack. 

• A little knowledge of assembly/machine 
language. 

• How system calls are made (at the level of 
machine code level). 

• exec() system calls  

 

– How to “guess” some key parameters. 
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What is a Buffer Overflow? 

• Intent 
– Arbitrary code execution 

• Spawn a remote shell or infect with worm/virus 

– Denial of service 
• Cause software to crash 

– E.g., ping of death attack 

• Steps 
– Inject attack code into buffer 

– Overflow return address 

– Redirect control flow to attack code 

– Execute attack code 
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Attack Possibilities 

• Targets 
– Stack, heap, static area 

– Parameter modification (non-pointer data) 
• Change parameters for existing call to exec() 

• Change privilege control variable 

• Injected code vs. existing code 

• Absolute vs. relative address dependence 

• Related Attacks 
– Integer overflows 

– Format-string attacks 
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Address Space 

0x00000000 

0x08048000 code 

static data 

bss 

heap 

shared library 

stack 

kernel space 

0x42000000 

0xC0000000 

0xFFFFFFFF 

From Dawn Song’s RISE: http://research.microsoft.com/projects/SWSecInstitute/slides/Song.ppt  
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C Call Stack 

• C Call Stack 

– When a function call is made, the return address 
is put on the stack.  

– Often the values of parameters are put on the 
stack. 

– Usually the function saves the stack frame pointer 
(on the stack). 

– Local variables are on the stack. 
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A Stack Frame 

Parameters 

Return Address 

Calling Stack Pointer 

Local Variables 

00000000 

Addresses 

SP 

SP+offset 

SP: stack pointer   BP: base/frame pointer 

BP 
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Sample 
Stack 

18 

addressof(y=3) return address 

saved stack pointer 

buf 

y 

x 

x=2; 

foo(18); 

y=3; 

 

void foo(int j) { 

   int x,y; 

  char buf[100]; 

   x=j; 

   … 

} 
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“Smashing the Stack”* 

• The general idea is to overflow a buffer so 
that it overwrites the return address. 

• When the function is done it will jump to 
whatever address is on the stack. 

• We put some code in the buffer and set the 
return address to point to it! 

*taken from the title of an article in Phrack 49-7 
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Before and After 
void foo(char *s) { 

 char buf[100]; 

 strcpy(buf,s); 

 … 

address of s 

return-address 

saved sp 

 

buf 

address of s 

pointer to pgm 

 

 

 

 

Small Program 
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• What causes buffer overflow? 
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Example: gets() 

char buf[20]; 

gets(buf);  // read user input until 

                  // first EoL or EoF character 

 

 

• Never use gets 

• Use fgets(buf, size, stdout) instead 
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Example: strcpy() 

char dest[20]; 

strcpy(dest, src); // copies string src to dest 

 

• strcpy assumes dest is long enough , and 
assumes src is null-terminated 

 

• Use strncpy(dest, src, size) instead 
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Spot the defect! (1) 

char buf[20]; 

char prefix[] = ”http://”; 

... 

strcpy(buf, prefix); 

 // copies the string prefix to buf 

strncat(buf, path, sizeof(buf)); 

 // concatenates path to the string buf 
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Spot the defect! (1) 

char buf[20]; 

char prefix[] = ”http://”; 

... 

strcpy(buf, prefix); 

 // copies the string prefix to buf 

strncat(buf, path, sizeof(buf)); 

 // concatenates path to the string buf 

 

 

strncat’s 3rd parameter is number of 

chars to copy, not the buffer size 

Another common mistake is giving sizeof(path) as 3rd argument... 
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Spot the defect! (2) 

char src[9]; 

char dest[9]; 

 

char base_url = ”www.ru.nl”; 

strncpy(src, base_url, 9); 

 // copies base_url to src 

strcpy(dest, src); 

 // copies src to dest 

 

base_url is 10 chars long, incl. its 

null terminator, so src won’t be 

not null-terminated 

so strcpy will overrun the buffer dest 
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Example: strcpy and strncpy 

• Don’t replace strcpy(dest, src) by 
– strncpy(dest, src, sizeof(dest)) 

• but by 
– strncpy(dest, src, sizeof(dest)-1) 
– dest[sizeof(dest)-1] = `\0`; 
– if dest should be null-terminated! 

 
 

• A strongly typed programming language could of 
course enforce that strings are always null-
terminated... 
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Spot the defect! (3) 

char *buf; 

int i, len; 

read(fd, &len, sizeof(len)); 

buf = malloc(len); 

read(fd,buf,len); 
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Spot the defect! (3) 

char *buf; 

int i, len; 

read(fd, &len, sizeof(len)); 

buf = malloc(len); 

read(fd,buf,len); 
 
 
 
 
 

• Memcpy() prototype: 
– void *memcpy(void *dest, const void *src, size_t n); 

• Definition of size_t: typedef unsigned int size_t; 

 

Didn’t check if negative 

len cast to unsigned and negative 

length overflows 
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Implicit Casting Bug 

• A signed/unsigned or an implicit casting bug 

– Very nasty – hard to spot 

• C compiler doesn’t warn about type 
mismatch between signed int and unsigned 
int 

– Silently inserts an implicit cast 

 



25 

Spot the defect! (4) 

 
char *buf; 
int i, len; 
read(fd, &len, sizeof(len)); 
if (len < 0) 
 {error ("negative length"); return; } 
buf = malloc(len+5); 
read(fd,buf,len); 
buf[len] = '\0'; // null terminate buf 

May results in integer overflow 
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Spot the defect! (5) 

#define MAX_BUF = 256 

 

void BadCode (char* input) 

 {  short len; 

  char buf[MAX_BUF]; 

  len = strlen(input); 

  if (len < MAX_BUF)  

                 strcpy(buf,input); 

 } 

 

What if input is longer 

than 32K ? 

len will be a negative 

number, 

due to integer overflow 

hence: potential buffer 

overflow 
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Spot the defect! (6) 

char buff1[MAX_SIZE], buff2[MAX_SIZE]; 

// make sure it’s a valid URL and will fit 

if (! isValid(url)) return; 

if (strlen(url) > MAX_SIZE – 1) return; 

// copy url up to first separator, ie. first ’/’, to buff1 

out = buff1; 

do { 

 // skip spaces 

 if (*url != ’ ’) *out++ = *url; 

} while (*url++ != ’/’); 

strcpy(buff2, buff1); 

... 

 

what if there is no ‘/’ in the URL? 

Loop termination (exploited by Blaster worm) 
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Spot the defect! (7) 

#include <stdio.h> 

int main(int argc, char* argv[]) 

{ if (argc > 1) 

printf(argv[1]); 

return 0; 

} 

 

This program is vulnerable to format string attacks, 
where calling the program with strings containing 
special characters can result in a buffer overflow 
attack. 
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Format String Attacks 

• int printf(const char *format [, argument]…); 

– snprintf, wsprintf … 

• What may happen if we execute 

   printf(string); 

– Where string is user-supplied ? 

– If it contains special characters, eg %s, %x, %n, 
%hn? 

 



Format String Attacks 

• Why this could happen? 

– Many programs delay output message for batch 
display: 

– fprintf(STDOUT, err_msg); 

– Where the err_msg is composed based on user 
inputs 

– If a user can change err_msg freely, format string 
attack is possible 
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Format String Attacks 

• %x reads and prints 4 bytes from stack 
– this may leak sensitive data 

• %n writes the number of characters printed so 
far onto the stack 
– this allow stack overflow attacks... 

• C format strings break the “don’t mix data & 
code” principle. 

• “Easy” to spot & fix: 
– replace printf(str) by printf(“%s”, str) 

 



Use Unix Machine in Department 

• The Unix machine: eustis.eecs.ucf.edu 

• Must use SSH to connect 
– Find free SSH clients on Internet 

• E.g., Putty  (command line based)  

• http://en.wikipedia.org/wiki/Ssh_client 

• Find a GUI-based SSH client 

• Username: NID 

• Default password: 
the first initial of your last name in uppercase and 
the last 5 digits of your PID 

32 

http://en.wikipedia.org/wiki/Ssh_client
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Example of “%x” --- Memory leaking 

#include <stdio.h> 

void main(int argc, char **argv){ 

 int a1=1; int a2=2; 

 int a3=3; int a4=4; 

 printf(argv[1]);     

} 

czou@:~$ ./test 

czou@eustis:~$ ./test "what is this?" 

what is this?czou@eustis:~$  

czou@eustis:~$  

czou@eustis:~$ ./test "%x   %x    %x   %x   %x %x" 

4   3    2   1   bfc994b0 bfc99508czou@eustis:~$  

czou@eustis:~$  
 

Bfc994b0:   saved stack pointer 

Bfc99508:   return address 



#include <stdio.h> 

void foo(char *format){ 

 int a1=11; int a2=12; 

 int a3=13; int a4=14; 

 printf(format); 

} 

void main(int argc, char **argv){ 

 foo(argv[1]); 

 printf("\n");     

} 

$./format-x-subfun "%x %x %x %x : %x,   %x,   %x    " 

80495bc e d c : b,   bffff7e8,   80483f4 

34 
Return address Four variables 
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• What does this string (“%x:%x:%s”) do? 

– Prints first two words of stack memory 

– Treats next stack memory word as memory addr 
and prints everything until first '\0‘ 

• Could segment fault if goes to other program’s 
memory 
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• Use obscure format specifier (%n) to write any 
value to any address in the victim’s memory 
– %n --- write 4 bytes at once 

– %hn  --- write 2 bytes at once 

• Enables attackers to mount malicious code 
injection attacks 
– Introduce code anywhere into victim’s memory 

– Use format string bug to overwrite return address on 
stack (or a function pointer) with pointer to 
malicious code 

 



Example of “%n”---- write data in memory 

#include <stdio.h> 

void main(int argc, char **argv){ 

 int bytes; 

 printf(“%s%n\n”, argv[1], &bytes); 

     printf(“You input %d characters\n”, bytes);     

} 

$./test  hello 

hello 

You input 5 characters 

 

 

 
37 



Function Pointer Overwritten 

• Function pointers: (used in attack on PHP 
4.0.2) 

 

 

– Overflowing buf will override function pointer. 

– Harder to defend than return-address overflow 
attacks 
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High addr.  

Of stack              buf[128] FuncPtr 



Test by Yourself 

#include <stdio.h> 

void main(void){ 

  /* short x = 32767;*/ 

  unsigned short x = 65535; 

   x = x +1; 

   printf("x= %d\n", x); 

} 

 

• Try to run it to see how overflow happens. 
– Modify the x definition to see other integer overflow 

cases 
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Buffer Overflow Defense 

40 
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Countermeasures 

• We can take countermeasures at different 
points in time 
– before we even begin programming 

– during development 

– when testing 

– when executing code 

• to prevent, to detect – at (pre)compile time or 
at runtime -, and to migitate problems with 
buffer overflows 

 



Preventing Buffer Overflow Attacks 

• Non-executable stack 

• Static source code analysis. 

• Run time checking:  StackGuard, Libsafe, SafeC, 
(Purify). 

• Randomization. 

• Type safe languages (Java, ML).     

• Detection deviation of program behavior 

• Sandboxing 

• Access control … 

42 
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Prevention 

• Don’t use C or C++ (use type-safe language) 
– Legacy code 
– Practical? 

• Better programmer awareness & training 
– Building Secure Software, J. Viega & G. McGraw, 2002 
– Writing Secure Code, M. Howard & D. LeBlanc, 2002 
– 19 deadly sins of software security, M. Howard, D LeBlanc 

& J. Viega, 2005 
– Secure programming for Linux and UNIX HOWTO, D. 

Wheeler, www.dwheeler.com/secure-programs 
– Secure C coding, T. Sirainen 

www.irccrew.org/~cras/security/c-guide.html 
 

 

http://www.dwheeler.com/secure-programs
http://www.dwheeler.com/secure-programs
http://www.dwheeler.com/secure-programs
http://www.irccrew.org/~cras/security/c-guide.html
http://www.irccrew.org/~cras/security/c-guide.html
http://www.irccrew.org/~cras/security/c-guide.html


44 

Dangerous C system calls 
source: Building secure software, J. Viega & G. McGraw, 2002 
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Secure Coding 

 

• Avoid risky programming constructs 
– Use fgets instead of gets 

– Use strn* APIs instead of str* APIs 

– Use snprintf instead of sprintf and vsprintf 

– scanf & printf: use format strings 

• Never assume anything about inputs 
– Negative value, big value 

– Very long strings 

 



46 

Prevention – use better string libraries 

• there is a choice between using statically vs 
dynamically allocated buffers 

– static approach easy to get wrong, and chopping 
user input may still have unwanted effects 

– dynamic approach susceptible to out-of-memory 
errors, and need for failing safely 
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Better string libraries 

• libsafe.h provides safer, modified versions of eg strcpy 

• strlcpy(dst,src,size) and strlcat(dst,src,size) with size the size 
of dst, not the maximum length copied. 
– Used in OpenBSD 

• glib.h provides Gstring type for dynamically growing null-
terminated strings in C 
– but failure to allocate will result in crash that cannot be intercepted, 

which may not be acceptable 

• Strsafe.h by Microsoft guarantees null-termination and 
always takes destination size as argument 

• C++ string class 
– data() and c-str()return low level C strings, ie char*, with result of 

data()is not always null-terminated on all platforms... 
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Dynamic countermeasures 

• Protection by kernel 
– Non-executable stack memory (NOEXEC) 

• prevents attacker executing her code 

– Address space layout randomisation (ASLR) 
• generally makes attacker's life harder 

– E.g., harder to get return address place and injected code 
address 

• Protection inserted by the compiler 
– to prevent or detect malicious changes to the 

stack 

• Neither prevents against heap overflows 
 



Bugs to Detect in Source Code Analysis 
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 Some examples 

• Crash Causing Defects 

• Null pointer dereference 

• Use after free 

• Double free  

• Array indexing errors 

• Mismatched array new/delete 

• Potential stack overrun 

• Potential heap overrun 

• Return pointers to local variables 

• Logically inconsistent code 

• Uninitialized variables 

• Invalid use of negative values 

• Passing large parameters by value 

• Underallocations of dynamic data 

• Memory leaks 

• File handle leaks 

• Network resource leaks 

• Unused values 

• Unhandled return codes 

• Use of invalid iterators 
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Marking stack as non-execute 

• Basic stack exploit can be prevented by marking 
stack segment as non-executable or randomizing 
stack location. 
– Then injected code on stack cannot run 
– Code patches exist for Linux and Solaris 

• E.g., our olympus.eecs.ucf.edu has patched for stack 
radnomization 

• Problems: 
– Does not block more general overflow exploits: 

• Overflow on heap, overflow func pointer 

– Does not defend against `return-to-libc’ exploit. 
– Some apps need executable stack (e.g. LISP interpreters). 
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Randomization Techniques 

• For successful exploit, the attacker needs to know 
where to jump to, i.e., 
– Stack layout for stack smashing attacks 
– Heap layout for code injection in heap 
– Shared library entry points for exploits using shared 

library 

• Randomization Techniques for Software Security 
– Randomize system internal details 

• Memory layout 
• Internal interfaces 

– Improve software system security 
• Reduce attacker knowledge of system detail to thwart exploit 
• Level of indirection as access control 
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Randomize Memory Layout (I) 

• Randomize stack starting point 

– Modify execve() system call in Linux kernel 

– Similar techniques apply to randomize heap 
starting point 

• Randomize heap starting point 

• Randomize variable layout 
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Randomize Memory Layout (II) 

• Handle a variety of memory safety vulnerabilities 
– Buffer overruns 
– Format string vulnerabilities 
– Integer overflow 
– Double free 

• Simple & Efficient 
– Extremely low performance overhead 

• Problems 
– Attacks can still happen 

• Overwrite data 
• May crash the program 

– Attacks may learn the randomization secret 
• Format string attacks 
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Dynamic countermeasure: stackGuard 

• Solution: StackGuard 

– Run time tests for stack integrity. 

– Embed “canaries” in stack frames and verify their 
integrity prior to function return. 

 



55 

Canary Types 

• Random canary: 

– Choose random string at program startup. 

– Insert canary string into every stack frame. 

– Verify canary before returning from function. 

– To corrupt random canary, attacker must learn 
the random string. 
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Canary Types 

• Additional countermeasures: 

– use a random value for the canary 

– XOR this random value with the return address 

– include string termination characters in the canary 
value  (why?) 
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• StackGuard implemented as a GCC patch 

– Program must be recompiled 

• Low performance effects: 8% foR Apache 

• Problem 

– Only protect stack activation record (return 
address, saved ebp value) 
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Purify 

• A tool that developers and testers use to find 
memory leaks and access errors. 

• Detects the following at the point of 
occurrence: 

– reads or writes to freed memory. 

– reads or writes beyond an array boundary. 

– reads from uninitialized memory. 
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Purify - Catching Array Bounds Violations 

• To catch array bounds violations, Purify allocates a 
small "red-zone" at the beginning and end of each 
block returned by malloc. 

• The bytes in the red-zone  recorded as 
unallocated. 

• If a program accesses these bytes, Purify signals an 
array bounds error. 

• Problem: 
– Does not check things on the stack 

– Extremely expensive 
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Further improvements 

• PointGuard 
– also protects other data values, eg function pointers, 

with canaries 
• Higher performance impact than stackGuard 

• ProPolice's Stack Smashing Protection (SSP) by 
IBM 
– also re-orders stack elements to reduce potential for 

trouble 

• Stackshield has a special stack for return 
addresses, and can disallow function pointers to 
the data segment 
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Dynamic countermeasures 

• libsafe library prevents buffer overruns 
beyond current stack frame in the dangerous 
functions it redefines 

– Dynamically loaded library. 

– Intercepts calls to  strcpy (dest, src) 

• Validates sufficient space in current stack frame: 
 |frame-pointer – dest| > strlen(src) 

• If so, does strcpy.    
Otherwise, terminates application. 

 

 

 



Dynamic countermeasures 

• libverify enhancement of libsafe keeps copies 
of the stack return address on the heap, and 
checks if these match 

62 
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• None of these protections are perfect! 
– even if attacks to return addresses are caught, 

integrity of other data other than the stack can 
still be abused 

– clever attacks may leave canaries intact 

– where do you store the "master" canary value 
• a cleverer attack could change it 

– none of this protects against heap overflows 
• eg buffer overflow within a struct... 

– New proposed non-control attack 
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Summary 

• Buffer overflows are the top security vulnerability 

• Any C(++) code acting on untrusted input is at risk 

• Getting rid of buffer overflow weaknesses in C(++) 
code is hard (and may prove to be impossible) 
– Ongoing arms race between countermeasures and ever 

more clever attacks. 

– Attacks are not only getting cleverer, using them is getting 
easier 

 


