
Mobile Security Introduction

Department of Computer Science & Technology
Tsinghua University

2

Acknowledgement

• This lecture is extended and modified from
lecture notes by:
– Dr. Cliff Zou: CAP6135/CIS3360 courses

– Dr. Yan Chen: EECS350 course

– Dr. Nickolai Zeldovich: 6.858 course

– Dr. Dang Song: CS161 course

– Dr. Marco Cova 20009/20010 courses

– Dr. Ninghui Li: CS426/CS526 courses

Contents

• Introduction

• Background

• Evaluating Android Security

• Application Analysis Results

• Study Limitations

• What This All Means

• Conclusions

3

Introduction

• Android Markets are not in a position to provide
security in more than a superficial way

• To broadly characterize the security of applications in
the Android Market

4

Introduction

• Wide misuse of privacy sensitive information
– “Cookie-esque” tracking

• Found no evidence of telephony misuse

• Ad and analytic network libraries => 51%
applications
– AdMob => 29.09%

– Google Ads => 18.72%

– Many applications include more than one ad library

• Failed to securely use Android APIs

5

Background

• Dalvik Virtual Machine

– JVM => .class

– DVM => .dex

• Dalvik dx compiler

6

Constant Pool:
-References to other classes
-Method names
-Numerical constants Class Definition:

-Access flags
-Class names

Data:
-Method code
-Info related to methods
-Variables

Background

• Register architecture

– DVM: register-based

• 2^16 available registers

– JVM: stack-based

• 200 opcodes

7

Background

• Instruction set

– DVM

• 218 opcodes

• Longer instructions

• Fewer instructions

• 30% fewer instructions, but 35% larger code size (bytes)

– JVM

• 200 opcodes

8

Background

9

Background

• Constant pool structure

– DVM

• Single pool

• dx eliminates some constants by inlining their values
directly into the bytecode

– JVM

• Multiple

10

Background

• Ambiguous primitive types

– DVM

• int/float, long/double use the same opcodes

– JVM

• Different

• Null references

– DVM

• Not specify a null type

• Use zero value

11

Background

• Comparison of object references

– DVM

• Comparison between two integers

• Comparison of integer and zero

– JVM

• if_acmpeq / if_acmpne

• ifnull / ifnonnull

12

Background

• Storage of primitive types in arrays

– DVM

• Ambiguous opcodes

• aget for int/float, aget-wide for long/double

13

The ded decompiler

• To decompile the Java source rather than to
operate on the DEX opcodes

– Leverage existing tools for code analysis

– Require access to source code to identify false-
positives resulting from automated code analysis

14

The ded decompiler

15

The ded decompiler

• Application Retargeting

– Type Inference

• Constant and variable declaration only specifies 32 or
64 bits

• Comparison operators do not distinguish between
integer and object reference comparison

• Inference must be path-sensitive

16

The ded decompiler

• Application Retargeting (cont.)

– To infer a register’s type

• Compare with a known type

• add-int like instruction only operate on specific types

• Use as return value or parameters of methods (via
method signature)

• Branch
– Push onto an inference stack

– DFS

17

The ded decompiler

• Constant Pool Conversion

– .dex file vs. .class file

• Single constant pool vs. multiple constant pool

• Dalvik bytecode places primitive type constant directly
in bytecode

18

The ded decompiler

• Method Code Retargeting

– Address multidimensional arrays

– Bytecode translation

• ded maps each referenced register to a Java local
variable table index

• Instruction traslation
– One Dalvik instruction -> multiple Java instructions

• ded defines exception tables that describe
try/catch/finally blocks

19

The ded decompiler

• Example:

20

The ded decompiler

• Optimization and Decompilation

– Soot

– While the Java bytecode generated by ded is legal,
the source code failure rate is almost entirely due
to Soot’s inability

21

http://www.sable.mcgill.ca/soot/

The ded decompiler

• Source Code Recovery
Validation

– decompilation time:
497.7 hours

– 99.97% of total time ->
Soot

22

The ded decompiler

• Retargeting Failures

– 0.59% of classes

– Unresolved reference

– Type violations by
Android dex compiler

– ded produces illegal
bytecode (rare)

• Decompilation Failures

– 5% of classes

– Soot

– Decompile traditonal
Java program

– 94.59%

23

The ded decompiler

• Future work

– Fernflower

– 98.04% recovery rate

24

http://www.reversed-java.com/fernflower/

Evaluating Android Security

• Analysis Specification

– Use Fortify SCA static analysis suite

– Control flow analysis

• A control flow rule is an automaton

25

Evaluating Android Security

• Analysis Specification (cont.)

– Data flow analysis

• IMEI, IMSI, ICC-ID

• Data flows between the sources and sinks are violations

– Structural analysis

– Semantic analysis

• Ex: app does not send SMS to hard-coded targets

26

Evaluating Android Security

• Overview
– Misuse of Phone Identifiers
– Exposure of Physical Location
– Abuse of Telephony Services
– Eavesdropping on Audio/Video
– Botnet Characteristics (Sockets)
– Harvesting Installed Applications
– Use of Advertisement Libraries
– Dangerous Developer Libraries
– Android-specific Vulnerabilities
– General Java Application Vulnerabilities

27

Application Analysis Results

• Information Misuse

– Phone Identifiers

28

22.4%

19.6%

Application Analysis Results

– Finding 1 - Phone identifiers are frequently leaked
through plaintext requests

– Finding 2 - Phone identifiers are used as device
fingerprints

– Finding 3 - Phone identifiers, specifically the IMEI, are
used to track individual users

– Finding 4 - The IMEI is tied to personally identifiable
information (PII)

– Finding 5 - Not all phone identifier use leads to
exfiltration

– Finding 6 - Phone identifiers are sent to advertisement
and analytics servers

29

Application Analysis Results

• Information Misuse (cont.)

– Location Information

• getLastKnownLocation()

• LocationListener => requestLocationUpdates()

30

45.9%

27.6%

Application Analysis Results

– Finding 7 - The granularity of location reporting
may not always be obvious to the user

– Finding 8 - Location information is sent to
advertisement servers

31

Application Analysis Results

• Phone Misuse

– Telephony Services

• A constant used for SMS destination number

• Creation of URI objects with “tel:” prefix and the string “900”

• URI objects with “tel:” prefix

– Finding 9 - Applications do not appear to be using
fixed phone number services

– Finding 10 - Applications do not appear to be misusing
voice services

32

Application Analysis Results

• Phone Misuse (cont.)

– Background Audio/Video

• Recording video without calling setPreviewDisplay()

• AudioRecord.read() is not reachable from an Android
activity component

• MediaRecorder.start() is not reachable from an activity
component

33

Application Analysis Results

– Finding 11 - Applications do not appear to be
misusing video recording

– Finding 12 - Applications do not appear to be
misusing audio recording

34

Application Analysis Results

• Phone Misuse (cont.)

– Socket API Use

– Finding 13 - A small number of applications
include code that uses the Socket class directly

– Finding 14 - We found no evidence of malicious
behavior by applications using Socket directly

35

Application Analysis Results

• Phone Misuse (cont.)

– Installed Applications

• A set of get APIs returning the list of installed app

• A set of query APIs that mirrors Android’s runtime
intent resolution

– Finding 15 - Applications do not appear to be
harvesting information about which applications
are installed on the phone

36

Application Analysis Results

• Included Libraries

– Advertisement and Analytics Libraries

37

29%

51%

18.7%

Application Analysis Results

– Finding 16 - Ad and analytics library use of phone
identifiers and location is sometimes configurable

– Finding 17 - Analytics library reporting frequency
is often configurable

– Finding 18 - Ad and analytics libraries probe for
permissions

38

Application Analysis Results

• Included Libraries (cont.)
– Developer Tookits

– Finding 19 - Some developer toolkits replicate

dangerous functionality
• jackeey.wallapaper sends identifiers to imnet.us

– Finding 20 - Some developer toolkits probe for
permissions
• checkPermission()

– Finding 21 - Well-known brands sometimes
commission developers that include dangerous
functionality

39

Application Analysis Results

• Android-specific Vulnerabilities

– Leaking Information to Logs

• READ_LOGS

• Finding 22 - Private information is written to Android’s
general logging interface

40

Application Analysis Results

• Android-specific Vulnerabilities (cont.)

– Leaking Information via IPC

• Finding 23 - Applications broadcast private information
in IPC accessible to all applications

41

Application Analysis Results

• Android-specific Vulnerabilities (cont.)

– Unprotected Broadcast Receivers

• Finding 24 - Few applications are vulnerable to forging
attacks to dynamic broadcast receivers

– Intent Injection Attacks

• Finding 25 - Some applications define intent addresses
based on IPC input

42

Application Analysis Results

• Android-specific Vulnerabilities (cont.)

– Delegating Control

• Pending intent

• Cannot change values

• But can fill in missing fields

• Finding 26 - Few applications unsafely delegate actions
– UI notification service

– Alarm service

– UI widget  main application

43

Application Analysis Results

• Android-specific Vulnerabilities (cont.)

– Null Checks on IPC Input

– Finding 27 - Applications frequently do not
perform null checks on IPC input

• 53.7% (591 applications)

44

Application Analysis Results

• Android-specific Vulnerabilities (cont.)

– Sdcard Use

• 22.8% (251 applications)

– JNI Use

• 6.3% (69 applications)

45

Study Limitations

• Application popularity

• Data and control flows for IPC between
components

• Source code recovery failures

• ProGuard

– Obfuscate

– Protect against readability

46

What This All Means

• Application certification

• Misuse of privacy sensitive information

• Cookie-esque tracking

• Ad and analytic libraries

– Free applications!

• LOG / unprotected IPC

47

Conclusion

• ded decompiler

• Dangerous functionality

• Other Android potential security Problems

– Application installation

– Malicious JNI

– phishing

48

