Mobile Security Introduction

Department of Computer Science & Technology
Tsinghua University

Acknowledgement

 This lecture is extended and modified from

lecture notes by:

— Dr. Cliff Zou: CAP6135/CIS3360 courses
— Dr. Yan Chen: EECS350 course

— Dr. Nickolai Zeldovich: 6.858 course

— Dr. Dang Song: CS161 course

— Dr. Marco Cova 20009/20010 courses
— Dr. Ninghui Li: CS426/CS526 courses

Contents

Introduction

Background

Evaluating Android Security
Application Analysis Results
Study Limitations

What This All Means
Conclusions

Introduction

 Android Markets are not in a position to provide
security in more than a superficial way

* To broadly characterize the security of applications in
the Android Market

" Installed Applications || System)
I I\ Applications || Display
I???E\"?E\?'\—/
I | : : N
sllsllsll&!|11|51l5!|| 5| | Bluetooth
e (lells|letile||le]|]le |

TS HSHSSPSIS|HS |
1 ! 1 Rt
A L5 L L L L5 (5 L GPS

1 =] lw] [=) =) 1! (=] =] lw] ! o

sl s||2|| 2] 2| =[] s]| | Receiver

i N AN AN AN i NI AN AN p——
_""""""""": ______________________ Cellular

[Binder] Radio)
[Embedded Linux]

Figure 1: The Android system architecture

Introduction

Wide misuse of privacy sensitive information

— “Cookie-esque” tracking

Found no evidence of telephony misuse

Ad and analytic network libraries =>51%
applications

— AdMob => 29.09%

— Google Ads =>18.72%

— Many applications include more than one ad library

Failed to securely use Android APlIs

Background

 Dalvik Virtual Machine
— JVM => .class
— DVM => .dex

* Dalvik dx compiler

A

Java
Source Code
(java files)

Java
Compiler

Class1.class

Constant Pool

Class Info

Data

ClassN.class

Constant Pool

Class Info

Data

dx

Constant Pool:

-References to other classes
-Metho

-Nu?éri Class Definition:

-Access flags

fieader

Constant Poo

Class1 defingi

Data:
-Method code

&y

-Info related to methods

-Variables

Figure 2: Compilation process for DVM applications

Background

* Register architecture

— DVM: register-based
e 2716 available registers

— JVM: stack-based
e 200 opcodes

Background

 |nstruction set

— DVM
e 218 opcodes
* Longer instructions
* Fewer instructions

* 30% fewer instructions, but 35% larger code size (bytes)

— JVM
e 200 opcodes

Background

.registers 6

.prologue
const/4 v5, 0x1

const/4 v4, 0x0

.line 41
new-instance v0, Ljava/lang/Boclean;

invoke-direct {v0, v4}, Ljava/lang/Boolean;-><init>(Z)V
sput-object v0, Lcom/google/common/ic/protocol/ProtoBuf;->FALSE:Ljava/lang/Boolean;

.line 42
new-instance v0, Ljava/lang/Boclean;

invoke-direct {v0, v5}, Ljava/lang/Boolean;-><init>(Z)V
sput-cbject v0, Lcom/google/common/ioc/protocol/ProtoBuf;->TRUE:Ljava/lang/Boolean;

.line 59
const/16 v0, 0x10

new-array v0, v0, [Ljava/lang/Long;

Background

* Constant pool structure
— DVM

* Single pool

* dx eliminates some constants by inlining their values
directly into the bytecode

— JVM
* Multiple

Background

 Ambiguous primitive types
— DVM
* int/float, long/double use the same opcodes

— JVM
e Different
* Null references

— DVM

* Not specify a null type
e Use zero value

Background

 Comparison of object references
— DVM

* Comparison between two integers
* Comparison of integer and zero

— JVM
 if acmpeq/if acmpne
 ifnull / ifnonnull

Background

e Storage of primitive types in arrays

— DVM

* Ambiguous opcodes
 aget for int/float, aget-wide for long/double

The ded decompiler

* To decompile the Java source rather than to
operate on the DEX opcodes

— Leverage existing tools for code analysis

— Require access to source code to identify false-
positives resulting from automated code analysis

The ded decompiler

(1) DEX Parsing

(2) Java class
Conversion

(3) Java class
Optimization

-_———— e — — — —

Missing Type
Inference

v

v

r
Method Code

Retargeting

|

l

|

: _

I

: ' _
L Constant Pool
I Conversion
I\

:

1

I

|

|

|

|

CFG
Construction
\

v

-
Type Inference

Processing
_ v,
e et~
—"
s ™~
Constant
Identification

v

' N
Constant Pool
Translation

ettt

Bytecode
Reorganization
\, .

v

s N
Instruction Set
Translation

.
e ————————

Figure 3: Dalvik bytecode retargeting

15

The ded decompiler

* Application Retargeting
— Type Inference

e Constant and variable declaration only specifies 32 or
64 bits

 Comparison operators do not distinguish between
integer and object reference comparison

* Inference must be path-sensitive

The ded decompiler

* Application Retargeting (cont.)

— To infer a register’s type
 Compare with a known type
* add-int like instruction only operate on specific types

e Use as return value or parameters of methods (via
method signature)
* Branch

— Push onto an inference stack
— DFS

The ded decompiler

e Constant Pool Conversion

— .dex file vs. .class file
* Single constant pool vs. multiple constant pool

* Dalvik bytecode places primitive type constant directly
in bytecode

The ded decompiler

* Method Code Retargeting
— Address multidimensional arrays

— Bytecode translation

* ded maps each referenced register to a Java local
variable table index

* |nstruction traslation

— One Dalvik instruction -> multiple Java instructions

* ded defines exception tables that describe
try/catch/finally blocks

The ded decompiler

* Example:

Dalvik
add-int dy, sg. 5]

Java
iload s
iload s,
iadd
istore d|,

20

The ded decompiler

* Optimization and Decompilation

— Soot

— While the Java bytecode generated by ded is legal,
the source code failure rate is almost entirely due
to Soot’s inability

http://www.sable.mcgill.ca/soot/

The ded decompiler

* Source Code Recovery
Validation

— decompilation time:
497.7 hours

— 99.97% of total time ->
Soot

Table 1: Studied Applications (from Android Market)

Total |Retargeted|Decompiled

Category Classes| Classes Classes LOC

Comics 5627 99.54% 94.72% 415625
Communication| 23000| 99.12% 92.32% 1832514
Demo 8012 99.90% 94.75% 830471
Entertainment 10300 99.64% 05.39% 709915
Finance 18375 99.34% 94.29% 1556392
Games (Arcade)| 8508 99.27% 93.16% 766045
Games (Puzzle) 9809 99.38% 94 58% 727642
Games (Casino) | 10754 99.39% 93.38% 985423
Games (Casual) RO47| 99.33% 93.69% 681429
Health 11438 99.55% 94.69% 847511
Lifestyle 0548 99.69% 95.30% 778446
Multimedia 15539 99.20% 03.46% 1323805
News/Weather 14297 99.41% 94.52% 1123674
Productivity 14751 99.25% 94.87% 1443600
Reference 10596 99.69% 04.87% 887794
Shopping 15771 99.64% 96.25% 1371351
Social 23188 99.57% 95.23% 2048177
Libraries 2748 99.45% 94, 18% 182655
Sports 8500 99.499% 94.444% 651881
Themes 4806 99.04% 93.30% 310203
Tools 9696 99.28% 95.29% 839866
Travel 18791 99.30% 94.47% 1419783
Total 262110] 99.41% 94.41% (21734202

The ded decompiler

e Retargeting Failures Decompilation Failures
— 0.59% of classes — 5% of classes
— Unresolved reference — Soot
— Type violations by — Decompile traditonal
Android dex compiler Java program
— ded produces illegal — 94.59%

bytecode (rare)

The ded decompiler

e Future work

— Fernflower

— 98.04% recovery rate

http://www.reversed-java.com/fernflower/

Evaluating Android Security

* Analysis Specification
— Use Fortify SCA static analysis suite

— Control flow analysis

* A control flow rule is an automaton

targeted eror

p1 =i.$new_class(...)
p2 =i.$new(..) |
i.$new_action(...)
p3 = i.$set_class(..) |
i.$set_component(...)
p4 =i.$put_extra(...)
p5 = i.$set_class(..) |
i.$set_component(...)
p6 = $unprotected_send(i) |
$protected_send(i, null)

init 5
p 06

p4
empty has_data

Figure 4: Example control flow specification

25

Evaluating Android Security

e Analysis Specification (cont.)

— Data flow analysis
e |MEI, IMSI, ICC-ID
* Data flows between the sources and sinks are violations

— Structural analysis

— Semantic analysis
* Ex: app does not send SMS to hard-coded targets

Evaluating Android Security

* Overview
— Misuse of Phone ldentifiers
— Exposure of Physical Location
— Abuse of Telephony Services
— Eavesdropping on Audio/Video
— Botnet Characteristics (Sockets)
— Harvesting Installed Applications
— Use of Advertisement Libraries
— Dangerous Developer Libraries
— Android-specific Vulnerabilities
— General Java Application Vulnerabilities

Application Analysis Results

 Information Misuse

— Phone Identifiers

Table 2: Access of Phone Identifiei/APIs

Identifier #Calls | # Apps | # W/Permission*
Phone Number 167 129 105

IMEI 378 216 - 1847
IMSI 38 30 27
ICC-ID 33 21 21
Total Unique - 246 2107

* Defined as having the READ_PHONE_STATE permission.
" Only 1 app did not also have the INTERNET permission.

Table 3: Detected Data Flows to Network Sinks

Phone Identifiers Location Info.
Sink # Flows | # Apps | # Flows | # Apps
OutputStream 10 9 0 0
HttpClient Param 24 9 12 4
URL Object 59 19 49 10
Total Unique - 33 - [3

28

Application Analysis Results

— Finding 1 - Phone identifiers are frequently leaked
through plaintext requests

— Finding 2 - Phone identifiers are used as device
fingerprints

— Finding 3 - Phone identifiers, specifically the IMEI, are
used to track individual users

— Finding 4 - The IMEI is tied to personally identifiable
information (Pll)

— Finding 5 - Not all phone identifier use leads to
exfiltration

— Finding 6 - Phone identifiers are sent to advertisement
and analytics servers

Application Analysis Results

* |Information Misuse (cont.)

— Location Information

e getLastKknownlLocation()

 LocationListener => requestLocationUpdates()

Table 4: Access of Location APIs

Identifier # Uses | # Apps | # y(! Perm.”
getLastKnownLocation 428 204 148
LocationListener 652 469 / 282
requestLocationUpdates 316 146/ 128
Total Unique - 505 |/ 304"

* Defined as having a LOCATION permission.

" In total, 5 apps did not also have the INTERNET permission.
30

Application Analysis Results

— Finding 7 - The granularity of location reporting
may not always be obvious to the user

— Finding 8 - Location information is sent to
advertisement servers

Application Analysis Results

* Phone Misuse
— Telephony Services

* A constant used for SMS destination number
* Creation of URI objects with “tel:” prefix and the string “900”
* URI objects with “tel:” prefix

— Finding 9 - Applications do not appear to be using
fixed phone number services

— Finding 10 - Applications do not appear to be misusing
voice services

Application Analysis Results

* Phone Misuse (cont.)

— Background Audio/Video
» Recording video without calling setPreviewDisplay()

e AudioRecord.read() is not reachable from an Android
activity component

 MediaRecorder.start() is not reachable from an activity
component

Application Analysis Results

— Finding 11 - Applications do not appear to be
misusing video recording

— Finding 12 - Applications do not appear to be
misusing audio recording

Application Analysis Results

* Phone Misuse (cont.)
— Socket API Use

— Finding 13 - A small number of applications
include code that uses the Socket class directly

— Finding 14 - We found no evidence of malicious
behavior by applications using Socket directly

Application Analysis Results

* Phone Misuse (cont.)

— Installed Applications
* A set of get APIs returning the list of installed app

* A set of query APIs that mirrors Android’s runtime
intent resolution

— Finding 15 - Applications do not appear to be
harvesting information about which applications
are installed on the phone

Application Analysis Results

* Included Libraries

— Advertisement and Analytics Libraries

Table 5: Identified Ad and Analytics Library Pig];\-r?/
Library Path FHApps | Formaf | ains
com/admob/android/ads 320 J~ODbf. L
com/google/ads 206 _1 ain -
com/flurry/android 98 ~gl?jf\
com/qwapi/adclient/android 74 Plain N
com/google/android/apps/analytics 67 Plain -
com/adwhirl 60 Plain L
com/mobclix/android/sdk 58 Plain L. E*
com/millennialmedia/android 52 Plain -
com/zestadz/android 10 Plain -
com/admarvel/android/ads 8 Plain -
com/estsoft/adlocal 8 Plain L
com/adfonic/android 5 Obf. -
com/vdroid/ads 5 Obf. L.E
com/greystripe/android/sdk 4 Obf. E
com/medialets 4 Obf. L
com/wooboo/adlib_android 4 Obf. L.PIf
com/adserver/adview 3 Obf. L
com/tapjoy 3 Plain -
com/inmobi/androidsdk 2 Plain E#
com/apegroup/ad 1 Plain -

see/adsdk 1 Plain S
com/webtrends/T 1 Plain L.E.S. 1
Total Unique Apps esel JI - -

* L = Location; P = Phone number; E = IMEIL; S = IMSI; I = ICC-ID
" In 1 app. the library included “L”, while the other 3 included “P. I".
* Direct API use not decompiled, but wrapper . getDeviceld() called.

Application Analysis Results

— Finding 16 - Ad and analytics library use of phone
identifiers and location is sometimes configurable

— Finding 17 - Analytics library reporting frequency
is often configurable

— Finding 18 - Ad and analytics libraries probe for
permissions

Application Analysis Results

* |Included Libraries (cont.)
— Developer Tookits

— Finding 19 - Some developer toolkits replicate
dangerous functionality

* jackeey.wallapaper sends identifiers to imnet.us
— Finding 20 - Some developer toolkits probe for
permissions
» checkPermission()
— Finding 21 - Well-known brands sometimes

commission developers that include dangerous
functionality

Application Analysis Results

* Android-specific Vulnerabilities

— Leaking Information to Logs
« READ_LOGS

* Finding 22 - Private information is written to Android’s
general logging interface

Application Analysis Results

* Android-specific Vulnerabilities (cont.)

— Leaking Information via IPC

Application: pkgname Application: mallcous
N —
. —
Partlally Specified Intent Message mallcous.BarRecelver
_ Action: "pkgname.intent ACTION" ™| _ Filter: "pkgname.intent ACTION®
Fully Specified Intent Message —= koname.FooRecelver
- Action: "pkgname._intent ACTION" > !’Fﬁ'ter_ oraheme et ACTION
- Component: "pkgname.FooReceiver” - PKg ' '

* Finding 23 - Applications broadcast private information
in IPC accessible to all applications

Application Analysis Results

* Android-specific Vulnerabilities (cont.)

— Unprotected Broadcast Receivers

* Finding 24 - Few applications are vulnerable to forging
attacks to dynamic broadcast receivers

— Intent Injection Attacks

* Finding 25 - Some applications define intent addresses
based on IPC input

Application Analysis Results

* Android-specific Vulnerabilities (cont.)

— Delegating Control
* Pending intent
* Cannot change values
e But can fill in missing fields

* Finding 26 - Few applications unsafely delegate actions
— Ul notification service
— Alarm service
— Ul widget €2 main application

Application Analysis Results

* Android-specific Vulnerabilities (cont.)
— Null Checks on IPC Input

— Finding 27 - Applications frequently do not
perform null checks on IPC input
e 53.7% (591 applications)

Application Analysis Results

* Android-specific Vulnerabilities (cont.)

— Sdcard Use
e 22.8% (251 applications)

— JNI Use
* 6.3% (69 applications)

Study Limitations

Application popularity

Data and control flows for IPC between
components

Source code recovery failures

ProGuard
— Obfuscate
— Protect against readability

What This All Means

Application certification

Misuse of privacy sensitive information
Cookie-esque tracking

Ad and analytic libraries

— Free applications!

LOG / unprotected IPC

Conclusion

* ded decompiler
* Dangerous functionality

* Other Android potential security Problems

— Application installation
— Malicious JNI

— phishing

