
Inroduction of Kint 

 

 Department of Computer Science & Technology 
Tsinghua University 



Main Content 

● What is Kint ? 

● The features of Kint 

● The design of Kint 

● The evaluation of Kint 

● NaN integer semantics 



What is Kint ? 

● Scalable 

● Static analysis 

● Detect integer errors in C program 



Main Content 

● What is Kint ? 

● The features of Kint 

● The design of Kint 

● The evaluation of Kint 

● NaN integer semantics 



The features of Kint 

● coverage：  

● statically generates a constraint capturing the path 

condition leading to an integer error 

 

● false positives： 

● int fun(int a, int b){ 

● if(a<0 || b<0 || a+b<a) 

● return -1; 

● return a+b; 

● } 



The features of Kint 

● Five contributions to help developers find and 

deal with integer errors: 

● 1. the pragmatic definition of integer errors 

● 2. whole-program analysis 

● 3. range annotation 

● 4. a family of overflow-checked integer for C 

● 5. a less error-prone API for memory allocation      

 in the Linux kernel 



Main Content 

● What is Kint ? 

● The features of Kint 

● The design of Kint 

● The evaluation of Kint 

● NaN integer semantics 



The design 

 of Kint 

 



The design of  Kint 

● In-bounds requirement of integer operations 

 



The design of  Kint 

● Function-level analysis : 

1. Bounds check insertion 

● On the level of IR, Kint marks the potential 

integer errors through LLVM intrinsic functions 



The design of  Kint -  

Function-level analysis 

2. Code rewriting： 

（1）Simplifying common idioms 



The design of  Kint- 

Funtion level analysis 

（2）Simplifying pointer arithmetic 



The design of  Kint- 

Function level analysis 

● i=(last+1)/BITS_PER_PAGE 

● map=pid_ns+4+i×8 

● pid_ns->pidmap=pid_ns+4 

● off=(pid_ns+4+i×8)-(pid_ns+4)=i×8 



The design of  Kint- 

Function level analysis 

● （3）Merging memory loads 



The design of  Kint- 

Function level analysis 

● （4）Eliminating checks using compiler 

optimizations 

● if optimizer infer that the potential integer error 

can't be satisfied, it will remove the 

corresponding LLVM intrinsic function 



The design of  Kint 

● Range analysis 

● one of the limitations of Function level analysis 
is that it can't capture the invariants that hold 
across functions 

● Kint stores a range in the global range table for 
every cross-function entity 



The design of  Kint- 

Range analysis 

● Strict-aliasing rules：one memory location 

can't be used by two different type 

● for example： 

● int a=9;  double b=(double)a; 



The design of  Kint 

● Taint analysis 

● classify error reports through an untrusted 

input(source) or sensitive context(sink) 



The design of  Kint 

● Constraint generation 

● the source of constraint： 

● assignments to variables by preceding operations 

● conditional branches along the execution path 



The design of  Kint- 

Contraint generation 



The design  

of  Kint 

- 

Constraint 

generation 



The design of  Kint- 

Constraint generation 

● ((optlen1 = 16) ∧ PathConstraint(I F -T 

RUE))∨((optlen1 = optlen0 ) ∧ 

PathConstraint(I F -FALSE)) 

● ((optlen1 = 16) ∧ (optlen0 >s 16) ∧ 

¬(optlen0 <u 4))∨((optlen1 = optlen0 ) ∧ 

¬(optlen0 >s 16)∧ ¬(optlen0 <u 4)) 



The design of  Kint- 

Constraint generation 
● For programs that contain loops, the path 

constraint generation algorithm unrolls each 

loop once and ignores branching edges that 

jump back in the control flow  



The design of  Kint- 

Constraint generation 

● To alleviate missing constraints due to loop 
unrolling, Kint moves constraints inside a loop 
to the outer scope if possible. 

● for(i = 0; i < n; ++i) 

● a[i] = ...; 

● constraint in the loop：i <s 0 

● constraint out of the loop：n <s 0 



The design of  Kint-Limitations 

● Kint only support C 

● Kint will miss conversion errors that are not 

caught by existing invari-ants  

● Kint analyzes loops by unrolling them once 

● if the solver times out, Kint may miss errors 

corresponding to the queried constraints 



Main Content 

● What is Kint ? 

● The features of Kint 

● The design of Kint 

● The evaluation of Kint 

● NaN integer semantics 



Evaluation of Kint 

● find new bugs 

● Completeness 

● False errors 

● Performance 



Evaluation of Kint-find new bugs 

● 2011.11-2012.4 

● Linux kernel: 105 

● Lighttpd: 1 

● OpenSSH: 5 



Evaluation of Kint-Completeness 



Evaluation of Kint-False positives 

● Three experiments： 

● CVE experiment 

● Whole-kernel report analysis 

● Single module analysis 



Evaluation of Kint-Performance 

● Kint analyzed 8,916 files within roughly 160 
minutes: 33 minutes for compila-tion using 
Clang, 87 minutes for range and taint 
analyses, and 37 minutes for generating 
constraints and solving 420,742 queries, of 
which 3,944 (0.94%) queries timed out.  



Main Content 

● What is Kint ? 

● The features of Kint 

● The design of Kint 

● The evaluation of Kint 

● NaN integer semantics 



NaN integer semantics 

● NaN - not-a-number 

● NaN state 



NaN整数语义 

 



NaN integer semantics 

● void *malloc(nan size_t size) 

● { 

● if (isnan(size)) 

● return NULL; 

● return libc_malloc((size_t) size); 

● } 



NaN integer semantics 

 


