" Inside KLEE

Department of Computer Science & Technology
Tsinghua University

Agenda

* About Symbolic Execution and KLEE
e LLVM Assembly Language (Bitcode)
 Memory and Execution States in KLEE
e How KLEE Analyzes Programs

" ABOUT SYMBOLIC
EXECUTION AND KLEE

About Symbolic Execution

Problem

> Determine what inputs cause each part of program to execute
e Usage

> Check program reliability

> Generate test cases automatically

> Help debugging

Related techniques

> Black-box / white-box testing

> Formal verification

o Key ideas

> Symbols as input

> Expressions as variable values

> Generate a set of <Path Constraints, Output> pairs

About Symbolic Execution

Symbolic Execution vs. Conventional Execution

~ Algebra vs.Arithmetic

Fig. 9. Commutativity diagram.

Symbolic Execution

(P(X).K) > (E(P(X)).K)

Set parameters to

‘ Substitute into result
integer values

of symbolic execution

iy
v Vv

P(K) > E(P(K))

Conventional Execution

Source: King,]. C. (1976). Symbolic Execution and Program Testing. Communications of the ACM, 19(7), 385-394.
doi:10.1145/360248.360252

190
180
170
160
150 1
140
130 1
120
1101

-
O
2
-
O
),
X
LL]
O
0
0
&
DN
Ve
s
)
O
e
<C

noo SN

[E T

a0
B0
70

o o o o
Wowm < M

20
10

100

Web of Knowledge)

Paper Counts (Source

Yoo e e e e e e e e e e e

£102
2102
1102
0rog
600¢
200z
2002
9002
5002
rooe
£002
200e
Tooe
000z
G6ET
3661
2661
9661
5667
F6aT
€661
2661
TGET
0661
6361
2361
L8671
98671
G861
Fa6T
£861
Z861
1861
0861
661
2.61
46T
9761
S/61
¥i6T
£/61
/61
161
0Z61
6961
89671
2961
99671
5961
Fa61
€967
Z961
T961
09671
6561
8561
2561

Web of Knowledge)

Reference Counts (Source

1000
950
900
850
800
750
700
650
600
550
500
450
400
350
300
250
200
150
100

50

About Symbolic Execution

. .cn.._n.r_ a0, .,._n.._n.r_n.r_-.cn.._n.r_ -, O 0o e .,._n.._n.r_n.r_-.cn.._n.r_ a0, .,._n.._n.r_n.r_-.cn.._n.r_ e .,._n.._n.r_n.r_-.cn.._n.r_ -, .cn.._.

..._n.._n.._-.._..._n.._n.._-.._..._n.._n.._-.._..._n.._n.._-.._..._n.._n.._-.._..._n.._n.._-.._..._n.._n.._-.._..._n.._n.._-:.F...-:-:.F...-:-:.F.._n:- .F.._n:-:.:n.._n:-:.:n.._n:- ..._n.._n.._-.._..._n.._n.._-.._..._n.._n.._-.._.F.._n:-:.:n.._n:-:.:n.._n:-:.:n.._.
:.._. e e e ._.)

About Symbolic Execution

» Existing works in academia
o PathFinder (NASA, TACAS'07)
o CUTE & jCUTE (UIUC, ISSTA’08)
o KLEE (Stanford, OSDI’08)
o CREST (UC Berkeley, AST’10)
o BitBlaze (UC Berkeley, NDSS’|0)
o Applications in industry *
> Microsoft(Pex, SAGE,YOGI, PREfix)
> IBM(Apollo)
> NASA
° Fujitsu
° etc.

* Source: Cadar, C., & Godefroid, P. (201 I). Symbolic execution for software testing in practice: preliminary assessment.
ICSE’I'| (pp. |-6). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsplarnumber=6032591

About KLEE

« OSDI'08

* By Cristian Cadar, Daniel Dunbar, Dawson Engler from Stanford University
* Website:

e Based on LLVM infrastructure

e Evaluation in the paper

60

> Analysis programs in Coreutils , 52
50 b
(3000~4000 ELOC on average)
40
> Time spent in each program is
. . 30
approximately 60min
20
16
10 +
] b 4
’—\ 2
U L n l]—|
N\ N & N Nl) & 9
s\?’}\g\ s*@& @550\\\ Q«\"‘\\\ Qﬁ\ & &
I S P S RS

Executable Lines of Code

Figure 4: Histogram showing the number of COREUTILS
tools that have a given number of executable lines of code
(ELOC).

http://klee.llvm.org/
http://klee.llvm.org/

About KLEE

e What is achieved

> Auto-generation of test
cases with high coverage

COREUTILS BUSYBOX
Coverage KLEE | Devel. KLEE | Devel.
(w/o lib) tests tests tests tests
100% 16 1 31 4
90-100% 40 6 24 3
80-90% 21 20 10 15
70-80% 7 23 5 6
60-70% 5 15 2 7
50-60% - 10 - 4
40-50% - 6 - -
30-40% - 3 - 2
20-30% - 1 - I
10-20% - 3 - -
0-10% -] - 30
Overall cov. 84.5% | 67.7% || 90.5% | 44.8%
Med cov/App || 94.7% | 72.5% || 97.5% | 58.9%
Ave cov/App 90.9% | 68.4% || 93.5% | 43.7%

Table 2: Number of COREUTILS tools which achieve line
coverage in the given ranges for KLEE and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average and
median coverage per application.

About KLEE

paste -d\\ abcdefghijklmnopgrstuvwxyz

* What is achieved 2 il
tac -r t£3.txt t3.txt
> Auto-generation of test mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

> Bug discovery mdSsum -c tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x t4.txt

seq -£ %0 1

tl.ext: "\t \tMD5 ("

t2.txt: "\b\b'\b\b\b\b\b\t"
t3.ext: "\n"

td.ext: "a"

cases with high coverage

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

About KLEE

4]
3
20
10
g s A A ._;Mﬂm ﬁ.._ cnf N aMmn n o~ TN
April duly Oclober 2010 April duly Oclober 20N Apl duly Ocloher 2012 April duly October

Code Frequency (From Github)

- LLVM BITCODE

LLVM Bitcode: An Example

int main(int argc, char *argv|[])
{

inti, sum=0;

for (i =0; i < 10; i++)

sum += i;

return sum;

%1 = alloca i32, align 4 «—— On-stack
storage
%2 = alloca i32, align 4 ;

%3 = alloca i8**, align 8\

%i = alloca i32, align 4

Local Variables

%sum = alloca i32, align 4

store i32 0, i32* %1 <+ type
store i32 %argc, i32* %2, align 4

store i8** %argy, i8*** %3, align 8
store i32 0, i32* %sum, align 4

store i32 0, i32* %i, align 4

; <label>:4 ; preds = %11, %0

%5 = load i32* %i, align 4
%6 = icmp slt i32 %5, 10
br il %6, label %7, label %14

- MEMORY AND
EXECUTION STATES IN
KLEE

Expressions in KLEE

e All dynamic data (values of global/local variables and in memory
cells) are represented by expressions in KLEE

e Examples

> Constant expression: 5
> Non-constant expression: (ADD w32 5 (READLSB w32 0))

KLEE: Memory Representation

o KLEE Use Memory Object and Obiject State for managing data in
memory cells
> Memory Object records basic information (e.g. base address and size)
of a continuous memory block
o Object State acts as a fixed-size array of expression each of with is 8-bit
long
* An injective (but not bijective because of COW) mapping is
maintained from Memory Object to Object State

KLEE: Memory Representation

» Each expression (representing a byte) in Object State is in one of
the following three states

o Concrete

> Known Symbolic
° Flushed

* A write request to Object State provides two arguments including
offset of the byte and data to be written

Concrete

Flushed

Known Symbolic

KLEE: Memory Representation

* When offset and data are both constant,
o the byte written becomes Concrete and

> read requests afterwards always get the data written this time

Concrete \
Flushed

Known Symbolic

KLEE: Memory Representation

* When offset is constant but data is hon-constant,
o the byte written becomes Known Symbolic and

> read requests afterwards always get the data written this time

Concrete

Flushed

Known Symbolic

KLEE: Memory Representation

e When offset is hon-constant

o All Concreate and Known Symbolic bytes are flushed to an Update List
in the form of write requests with <offset, value> pairs

> All bytes become Flushed
> Read from a Flushed byte gets a READ expression

* For read requests with non-constant offset, the bytes are also
flushed

Concrete

Flushed

/

Known Symbolic

KLEE: Execution State

» Execution State represents a snapshot of the program under
execution.

» Execution of the program is regarded as transitions among multiple
Execution States.

KLEE: Execution State

e What is in an Execution State?

o Stack

o Stack is a vector of stack frames.

e Each stack frame includes

> value of local variables, each of which is represented by an expression
and

° Allocation of local storage recorded by a list of Memory Object

KLEE: Execution State

e What is in an Execution State?
o Stack

> Memory states

e Memory states are represented by a list of Memory Objects
(recording ranges) with their corresponding Object States
(recording values).

e Mapping from Memory Objects to Object States is maintained as
an Address Space.

KLEE: Execution State

e What s in an Execution State!?
o Stack
> Memory states

> Program counter

* Represented by a wrapper of LLVM Instruction object
(Kinstruction) .

KLEE: Execution State

* What is in an Execution State!
o Stack
> Memory states
> Program counter

o Path constraints

» Path constraints are a set of Boolean expressions recording when
this Execution State can be reached

- HOW KLEE ANALYZES
PROGRAMS

How KLEE works

The main loop:

e Create initial Execution State and add it to the unexplored Execution
States list L

while (L is not empty) do

pick up an Execution State S from L

o execution one instruction of S

if there is any new Execution State generated

then add generated Execution State(s) to L

else solve path constraints and generate a test case

done

How KLEE Interprets LLVM Bitcode

e Alloca
> Format:
<result> = alloca <type>[, <ty> <NumElements>]

> When <NumElements> is constant, KLEE will
allocate an unused memory range,
create an Object State with the same size,
initialize the bytes in the Object State with 0xAB,
assign the base address of the allocated range to <result> and

insert the allocated range into local storage list in the current stack
frame (for it will be automatically freed when the function returns)

How KLEE Interprets LLVM Bitcode

e Br

o Format of branch without condition

br label <dest>

> KLEE will

set program counter to the first instruction of the target basic block

How KLEE Interprets LLVM Bitcode

e Br

> Format of branching with condition

br il <cond>, label <iftrue>, label <iffalse>
o KLEE will
Evaluate <cond>,
if <cond> is a tautology or a contradiction

* then branch without condition and add the Boolean expression (Eq
<cond>T/F) to path constraints

- else create a copy of the Execution State, branch to different basic
block in different Execution State and add corresponding Boolean
expression to the path constraints

How KLEE Interprets LLVM Bitcode

* How to copy Execution State
o State: copy completely

o Memory state: copy Address Space and share Object States till they
are written

> Path constraints: copy the container and share expressions

How KLEE Interprets LLVM Bitcode

* Object State: How to copy on write (COW)

(o]

(o]

(o]

Each Address Space has a cowKey initialized to |
Each Object State has an ownerKey;

When Address Space is copied (including cowKey), cowKey of the new
Address Space is incremented

Each time handling write requests to Object State S, KLEE checks
cowKey of current Address Space A and ownerKey of the S

If A.cowKey = S.ownerKey, the request is performed to S

If A.cowKey != S.ownerKey, a copy of S (say S') is created,
S'.ownerKey is set to A.cowKey and the request is performed to S'

KLEE: Optimizations

» Expression simplification
o Constant expressions are calculated
o Usage of operators is restricted

e.g.do not use Ulty Uge. Slt. Sge in Boolean expressions

e Constraint rewrite

KLEE: Other Issues Addressed

e Model execution environment
> command line options
° environment variables

o standard libraries

» Execution State picking up policy in the main loop

KLEE: Restrictions

* Because of path explosion, symbolic execution engines can hardly
traverse all Execution State

e KLEE provides some options to restrict the execution space
explored
° -max-depth

o -max-fork

