
Inside KLEE

Department of Computer Science & Technology
Tsinghua University

Agenda

 About Symbolic Execution and KLEE

 LLVM Assembly Language (Bitcode)

 Memory and Execution States in KLEE

 How KLEE Analyzes Programs

ABOUT SYMBOLIC
EXECUTION AND KLEE

About Symbolic Execution

 Problem

◦ Determine what inputs cause each part of program to execute

 Usage

◦ Check program reliability

◦ Generate test cases automatically

◦ Help debugging

 Related techniques

◦ Black-box / white-box testing

◦ Formal verification

 Key ideas

◦ Symbols as input

◦ Expressions as variable values

◦ Generate a set of <Path Constraints, Output> pairs

About Symbolic Execution

Source：King, J. C. (1976). Symbolic Execution and Program Testing. Communications of the ACM, 19(7), 385–394.

doi:10.1145/360248.360252

 Symbolic Execution vs. Conventional Execution

≈ Algebra vs. Arithmetic

About Symbolic Execution

Paper Counts（Source：Web of Knowledge）

About Symbolic Execution

Reference Counts（Source：Web of Knowledge）

About Symbolic Execution

 Existing works in academia

◦ PathFinder (NASA, TACAS’07)

◦ CUTE & jCUTE (UIUC, ISSTA’08)

◦ KLEE (Stanford, OSDI’08)

◦ CREST (UC Berkeley, AST’10)

◦ BitBlaze (UC Berkeley, NDSS’10)

 Applications in industry *

◦ Microsoft(Pex, SAGE, YOGI, PREfix)

◦ IBM(Apollo)

◦ NASA

◦ Fujitsu

◦ etc.

* Source：Cadar, C., & Godefroid, P. (2011). Symbolic execution for software testing in practice: preliminary assessment.

ICSE’11 (pp. 1–6). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6032591

About KLEE

 OSDI’08

 By Cristian Cadar, Daniel Dunbar, Dawson Engler from Stanford University

 Website：http://KLEE.llvm.org/

 Based on LLVM infrastructure

 Evaluation in the paper

◦ Analysis programs in Coreutils

 (3000~4000 ELOC on average)

◦ Time spent in each program is

 approximately 60min

http://klee.llvm.org/
http://klee.llvm.org/

About KLEE

 What is achieved

◦ Auto-generation of test

cases with high coverage

About KLEE

 What is achieved

◦ Auto-generation of test

cases with high coverage

◦ Bug discovery

About KLEE

Code Frequency（From Github）

LLVM BITCODE

LLVM Bitcode: An Example

int main(int argc, char *argv[])

{

 int i, sum = 0;

 for (i = 0; i < 10; i++)

 sum += i;

 return sum;

}

 %1 = alloca i32, align 4

 %2 = alloca i32, align 4

 %3 = alloca i8**, align 8

 %i = alloca i32, align 4

 %sum = alloca i32, align 4

 store i32 0, i32* %1

 store i32 %argc, i32* %2, align 4

 store i8** %argv, i8*** %3, align 8

 store i32 0, i32* %sum, align 4

 store i32 0, i32* %i, align 4

; <label>:4 ; preds = %11, %0

 %5 = load i32* %i, align 4

 %6 = icmp slt i32 %5, 10

 br i1 %6, label %7, label %14

On-stack

storage

Local Variables

type

MEMORY AND
EXECUTION STATES IN
KLEE

Expressions in KLEE

 All dynamic data (values of global/local variables and in memory

cells) are represented by expressions in KLEE

 Examples

◦ Constant expression：5

◦ Non-constant expression：(ADD w32 5 (READLSB w32 0))

KLEE: Memory Representation

 KLEE Use Memory Object and Object State for managing data in

memory cells

◦ Memory Object records basic information (e.g. base address and size)

of a continuous memory block

◦ Object State acts as a fixed-size array of expression each of with is 8-bit

long

 An injective (but not bijective because of COW) mapping is

maintained from Memory Object to Object State

KLEE: Memory Representation

 Each expression (representing a byte) in Object State is in one of

the following three states

◦ Concrete

◦ Known Symbolic

◦ Flushed

 A write request to Object State provides two arguments including

offset of the byte and data to be written

Concrete

Known Symbolic

Flushed

KLEE: Memory Representation

 When offset and data are both constant,

◦ the byte written becomes Concrete and

◦ read requests afterwards always get the data written this time

Concrete

Known Symbolic

Flushed

KLEE: Memory Representation

 When offset is constant but data is non-constant,

◦ the byte written becomes Known Symbolic and

◦ read requests afterwards always get the data written this time

Concrete

Known Symbolic

Flushed

KLEE: Memory Representation

 When offset is non-constant

◦ All Concreate and Known Symbolic bytes are flushed to an Update List

in the form of write requests with <offset, value> pairs

◦ All bytes become Flushed

◦ Read from a Flushed byte gets a READ expression

 For read requests with non-constant offset, the bytes are also

flushed

Concrete

Known Symbolic

Flushed

KLEE: Execution State

 Execution State represents a snapshot of the program under

execution.

 Execution of the program is regarded as transitions among multiple

Execution States.

KLEE: Execution State

 What is in an Execution State?

◦ Stack

 Stack is a vector of stack frames.

 Each stack frame includes

◦ value of local variables, each of which is represented by an expression

and

◦ Allocation of local storage recorded by a list of Memory Object

KLEE: Execution State

 What is in an Execution State?

◦ Stack

◦ Memory states

 Memory states are represented by a list of Memory Objects

(recording ranges) with their corresponding Object States

(recording values).

 Mapping from Memory Objects to Object States is maintained as

an Address Space.

KLEE: Execution State

 What is in an Execution State?

◦ Stack

◦ Memory states

◦ Program counter

 Represented by a wrapper of LLVM Instruction object

（Kinstruction）.

KLEE: Execution State

 What is in an Execution State?

◦ Stack

◦ Memory states

◦ Program counter

◦ Path constraints

 Path constraints are a set of Boolean expressions recording when

this Execution State can be reached

HOW KLEE ANALYZES
PROGRAMS

How KLEE works

The main loop:

 Create initial Execution State and add it to the unexplored Execution

States list L

 while (L is not empty) do

 pick up an Execution State S from L

 execution one instruction of S

 if there is any new Execution State generated

 then add generated Execution State(s) to L

 else solve path constraints and generate a test case

 done

How KLEE Interprets LLVM Bitcode

 Alloca

◦ Format：

◦ When <NumElements> is constant, KLEE will

 allocate an unused memory range,

 create an Object State with the same size,

 initialize the bytes in the Object State with 0xAB,

 assign the base address of the allocated range to <result> and

 insert the allocated range into local storage list in the current stack

frame (for it will be automatically freed when the function returns)

<result> = alloca <type>[, <ty> <NumElements>]

How KLEE Interprets LLVM Bitcode

 Br

◦ Format of branch without condition

◦ KLEE will

 set program counter to the first instruction of the target basic block

br label <dest>

How KLEE Interprets LLVM Bitcode

 Br

◦ Format of branching with condition

◦ KLEE will

 Evaluate <cond>,

 if <cond> is a tautology or a contradiction

 then branch without condition and add the Boolean expression (Eq

<cond> T/F) to path constraints

 else create a copy of the Execution State, branch to different basic

block in different Execution State and add corresponding Boolean

expression to the path constraints

br i1 <cond>, label <iftrue>, label <iffalse>

How KLEE Interprets LLVM Bitcode

 How to copy Execution State

◦ State：copy completely

◦ Memory state：copy Address Space and share Object States till they

are written

◦ Path constraints：copy the container and share expressions

How KLEE Interprets LLVM Bitcode

 Object State: How to copy on write (COW)

◦ Each Address Space has a cowKey initialized to 1

◦ Each Object State has an ownerKey；

◦ When Address Space is copied (including cowKey), cowKey of the new

Address Space is incremented

◦ Each time handling write requests to Object State S, KLEE checks

cowKey of current Address Space A and ownerKey of the S

 If A.cowKey = S.ownerKey, the request is performed to S

 If A.cowKey != S.ownerKey, a copy of S (say S') is created,

S'.ownerKey is set to A.cowKey and the request is performed to S'

KLEE: Optimizations

 Expression simplification

◦ Constant expressions are calculated

◦ Usage of operators is restricted

 e.g. do not use Ult、Uge、Slt、Sge in Boolean expressions

 Constraint rewrite

KLEE: Other Issues Addressed

 Model execution environment

◦ command line options

◦ environment variables

◦ standard libraries

 Execution State picking up policy in the main loop

KLEE: Restrictions

 Because of path explosion, symbolic execution engines can hardly

traverse all Execution State

 KLEE provides some options to restrict the execution space

explored

◦ -max-depth

◦ -max-fork

◦ ……

