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ABOUT SYMBOLIC 
EXECUTION AND KLEE 



About Symbolic Execution 

 Problem 

◦ Determine what inputs cause each part of program to execute 

 Usage 

◦ Check program reliability 

◦ Generate test cases automatically 

◦ Help debugging 

 Related techniques 

◦ Black-box / white-box testing 

◦ Formal verification 

 Key ideas 

◦ Symbols as input 

◦ Expressions as variable values 

◦ Generate a set of <Path Constraints, Output> pairs 



About Symbolic Execution 

Source：King, J. C. (1976). Symbolic Execution and Program Testing. Communications of the ACM, 19(7), 385–394. 

doi:10.1145/360248.360252 

     Symbolic Execution vs. Conventional Execution 

≈ Algebra vs. Arithmetic 



About Symbolic Execution 

Paper Counts（Source：Web of Knowledge） 



About Symbolic Execution 

Reference Counts（Source：Web of Knowledge） 



About Symbolic Execution 

 Existing works in academia 

◦ PathFinder (NASA,  TACAS’07) 

◦ CUTE & jCUTE (UIUC,  ISSTA’08) 

◦ KLEE (Stanford, OSDI’08) 

◦ CREST (UC Berkeley,  AST’10) 

◦ BitBlaze (UC Berkeley, NDSS’10) 

 Applications in industry * 

◦ Microsoft(Pex, SAGE, YOGI, PREfix) 

◦ IBM(Apollo) 

◦ NASA 

◦ Fujitsu 

◦ etc. 

 
* Source：Cadar, C., & Godefroid, P. (2011). Symbolic execution for software testing in practice: preliminary assessment. 

ICSE’11 (pp. 1–6). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6032591 



About KLEE 

 OSDI’08 

 By Cristian Cadar, Daniel Dunbar, Dawson Engler from Stanford University 

 Website：http://KLEE.llvm.org/ 

 Based on LLVM infrastructure 

 Evaluation in the paper 

◦ Analysis programs in Coreutils 

 (3000~4000 ELOC on average) 

◦ Time spent in each program is  

 approximately 60min 

http://klee.llvm.org/
http://klee.llvm.org/


About KLEE 

 What is achieved 

◦ Auto-generation of test 

cases with high coverage 



About KLEE 

 What is achieved 

◦ Auto-generation of test 

cases with high coverage 

◦ Bug discovery 



About KLEE 

Code Frequency（From Github） 



LLVM BITCODE 



LLVM Bitcode: An Example 

int main(int argc, char *argv[]) 

{ 

    int i, sum = 0; 

    for (i = 0; i < 10; i++) 

        sum += i; 

    return sum; 

} 

  %1 = alloca i32, align 4 

  %2 = alloca i32, align 4 

  %3 = alloca i8**, align 8 

  %i = alloca i32, align 4 

  %sum = alloca i32, align 4 

  store i32 0, i32* %1 

  store i32 %argc, i32* %2, align 4 

  store i8** %argv, i8*** %3, align 8 

  store i32 0, i32* %sum, align 4 

  store i32 0, i32* %i, align 4 

; <label>:4                    ; preds = %11, %0 

  %5 = load i32* %i, align 4 

  %6 = icmp slt i32 %5, 10 

  br i1 %6, label %7, label %14 

On-stack 

storage 

Local Variables 

type 



MEMORY AND 
EXECUTION STATES IN 
KLEE 



Expressions in KLEE 

 All dynamic data (values of global/local variables and in memory 

cells) are represented by expressions in KLEE 

 Examples 

◦ Constant expression：5 

◦ Non-constant expression：(ADD w32 5 (READLSB w32 0)) 



KLEE: Memory Representation 

 KLEE Use Memory Object and Object State for managing data in 

memory cells 

◦ Memory Object records basic information (e.g. base address and size) 

of a continuous memory block 

◦ Object State acts as a fixed-size array of expression each of with is 8-bit 

long 

 An injective (but not bijective because of COW) mapping is 

maintained from Memory Object to Object State 



KLEE: Memory Representation 

 Each expression (representing a byte) in Object State is in one of 

the following three states 

◦ Concrete 

◦ Known Symbolic 

◦ Flushed 

 A write request to Object State provides two arguments including 

offset of the byte and data to be written 

Concrete 

Known Symbolic 

Flushed 



KLEE: Memory Representation 

 When offset and data are both constant,  

◦ the byte written becomes Concrete and 

◦ read requests afterwards always get the data written this time 

Concrete 

Known Symbolic 

Flushed 



KLEE: Memory Representation 

 When offset is constant but data is non-constant, 

◦ the byte written becomes Known Symbolic and 

◦ read requests afterwards always get the data written this time 

Concrete 

Known Symbolic 

Flushed 



KLEE: Memory Representation 

 When offset is non-constant 

◦ All Concreate and Known Symbolic bytes are flushed to an Update List 

in the form of write requests with <offset, value> pairs 

◦ All bytes become Flushed 

◦ Read from a Flushed byte gets a READ expression 

 For read requests with non-constant offset, the bytes are also 

flushed 

Concrete 

Known Symbolic 

Flushed 



KLEE: Execution State 

 Execution State represents a snapshot of the program under 

execution. 

 Execution of the program is regarded as transitions among multiple 

Execution States. 



KLEE: Execution State 

 What is in an Execution State? 

◦ Stack 

 

 

 

 

 

 Stack is a vector of stack frames. 

 Each stack frame includes 

◦ value of local variables, each of which is represented by an expression 

and 

◦ Allocation of local storage recorded by a list of Memory Object 



KLEE: Execution State 

 What is in an Execution State? 

◦ Stack 

◦ Memory states 

 

 

 

 

 Memory states are represented by a list of Memory Objects 

(recording ranges) with their corresponding Object States 

(recording values). 

 Mapping from Memory Objects to Object States is maintained as 

an Address Space. 



KLEE: Execution State 

 What is in an Execution State? 

◦ Stack 

◦ Memory states 

◦ Program counter 

 

 

 

 Represented by a wrapper of LLVM Instruction object

（Kinstruction）. 



KLEE: Execution State 

 What is in an Execution State? 

◦ Stack 

◦ Memory states 

◦ Program counter 

◦ Path constraints 

 

 

 Path constraints are a set of Boolean expressions recording when 

this Execution State can be reached 

 



HOW KLEE ANALYZES 
PROGRAMS 



How KLEE works 

The main loop: 

 Create initial Execution State and add it to the unexplored Execution 

States list L 

 while (L is not empty) do 

     pick up an Execution State S from L 

     execution one instruction of S 

     if there is any new Execution State generated 

         then add generated Execution State(s) to L 

         else solve path constraints and generate a test case 

 done 



How KLEE Interprets LLVM Bitcode 

 Alloca 

◦ Format： 

 

◦ When <NumElements> is constant, KLEE will 

 allocate an unused memory range, 

 create an Object State with the same size, 

 initialize the bytes in the Object State with 0xAB, 

 assign the base address of the allocated range to <result> and 

 insert the allocated range into local storage list in the current stack 

frame (for it will be automatically freed when the function returns) 

<result> = alloca <type>[, <ty> <NumElements>] 



How KLEE Interprets LLVM Bitcode 

 Br 

◦ Format of branch without condition 

 

◦ KLEE will 

 set program counter to the first instruction of the target basic block 

br label <dest> 



How KLEE Interprets LLVM Bitcode 

 Br 

◦ Format of branching with condition 

 

◦ KLEE will 

 Evaluate <cond>, 

 if <cond> is a tautology or a contradiction 

 then branch without condition and add the Boolean expression (Eq 

<cond> T/F) to path constraints 

 else create a copy of the Execution State, branch to different basic 

block in different Execution State and add corresponding Boolean 

expression to the path constraints 

br i1 <cond>, label <iftrue>, label <iffalse> 



How KLEE Interprets LLVM Bitcode 

 How to copy Execution State 

◦ State：copy completely 

◦ Memory state：copy Address Space and share Object States till they 

are written 

◦ Path constraints：copy the container and share expressions 



How KLEE Interprets LLVM Bitcode 

 Object State: How to copy on write (COW) 

◦ Each Address Space has a cowKey initialized to 1 

◦ Each Object State has an ownerKey； 

◦ When Address Space is copied (including cowKey), cowKey of the new 

Address Space is incremented 

◦ Each time handling write requests to Object State S, KLEE checks 

cowKey of current Address Space A and ownerKey of the S 

 If A.cowKey = S.ownerKey, the request is performed to S 

 If A.cowKey != S.ownerKey, a copy of S (say S') is created, 

S'.ownerKey is set to A.cowKey and the request is performed to S' 



KLEE: Optimizations 

 Expression simplification 

◦ Constant expressions are calculated 

◦ Usage of operators is restricted 

 e.g. do not use Ult、Uge、Slt、Sge in Boolean expressions 

 Constraint rewrite 



KLEE: Other Issues Addressed 

 Model execution environment 

◦ command line options 

◦ environment variables 

◦ standard libraries 

 Execution State picking up policy in the main loop 



KLEE: Restrictions 

 Because of path explosion, symbolic execution engines can hardly 

traverse all Execution State 

 KLEE provides some options to restrict the execution space 

explored 

◦ -max-depth 

◦ -max-fork 

◦ …… 


