
Inside KLEE

Department of Computer Science & Technology
Tsinghua University

Agenda

 About Symbolic Execution and KLEE

 LLVM Assembly Language (Bitcode)

 Memory and Execution States in KLEE

 How KLEE Analyzes Programs

ABOUT SYMBOLIC
EXECUTION AND KLEE

About Symbolic Execution

 Problem

◦ Determine what inputs cause each part of program to execute

 Usage

◦ Check program reliability

◦ Generate test cases automatically

◦ Help debugging

 Related techniques

◦ Black-box / white-box testing

◦ Formal verification

 Key ideas

◦ Symbols as input

◦ Expressions as variable values

◦ Generate a set of <Path Constraints, Output> pairs

About Symbolic Execution

Source：King, J. C. (1976). Symbolic Execution and Program Testing. Communications of the ACM, 19(7), 385–394.

doi:10.1145/360248.360252

 Symbolic Execution vs. Conventional Execution

≈ Algebra vs. Arithmetic

About Symbolic Execution

Paper Counts（Source：Web of Knowledge）

About Symbolic Execution

Reference Counts（Source：Web of Knowledge）

About Symbolic Execution

 Existing works in academia

◦ PathFinder (NASA, TACAS’07)

◦ CUTE & jCUTE (UIUC, ISSTA’08)

◦ KLEE (Stanford, OSDI’08)

◦ CREST (UC Berkeley, AST’10)

◦ BitBlaze (UC Berkeley, NDSS’10)

 Applications in industry *

◦ Microsoft(Pex, SAGE, YOGI, PREfix)

◦ IBM(Apollo)

◦ NASA

◦ Fujitsu

◦ etc.

* Source：Cadar, C., & Godefroid, P. (2011). Symbolic execution for software testing in practice: preliminary assessment.

ICSE’11 (pp. 1–6). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6032591

About KLEE

 OSDI’08

 By Cristian Cadar, Daniel Dunbar, Dawson Engler from Stanford University

 Website：http://KLEE.llvm.org/

 Based on LLVM infrastructure

 Evaluation in the paper

◦ Analysis programs in Coreutils

 (3000~4000 ELOC on average)

◦ Time spent in each program is

 approximately 60min

http://klee.llvm.org/
http://klee.llvm.org/

About KLEE

 What is achieved

◦ Auto-generation of test

cases with high coverage

About KLEE

 What is achieved

◦ Auto-generation of test

cases with high coverage

◦ Bug discovery

About KLEE

Code Frequency（From Github）

LLVM BITCODE

LLVM Bitcode: An Example

int main(int argc, char *argv[])

{

 int i, sum = 0;

 for (i = 0; i < 10; i++)

 sum += i;

 return sum;

}

 %1 = alloca i32, align 4

 %2 = alloca i32, align 4

 %3 = alloca i8**, align 8

 %i = alloca i32, align 4

 %sum = alloca i32, align 4

 store i32 0, i32* %1

 store i32 %argc, i32* %2, align 4

 store i8** %argv, i8*** %3, align 8

 store i32 0, i32* %sum, align 4

 store i32 0, i32* %i, align 4

; <label>:4 ; preds = %11, %0

 %5 = load i32* %i, align 4

 %6 = icmp slt i32 %5, 10

 br i1 %6, label %7, label %14

On-stack

storage

Local Variables

type

MEMORY AND
EXECUTION STATES IN
KLEE

Expressions in KLEE

 All dynamic data (values of global/local variables and in memory

cells) are represented by expressions in KLEE

 Examples

◦ Constant expression：5

◦ Non-constant expression：(ADD w32 5 (READLSB w32 0))

KLEE: Memory Representation

 KLEE Use Memory Object and Object State for managing data in

memory cells

◦ Memory Object records basic information (e.g. base address and size)

of a continuous memory block

◦ Object State acts as a fixed-size array of expression each of with is 8-bit

long

 An injective (but not bijective because of COW) mapping is

maintained from Memory Object to Object State

KLEE: Memory Representation

 Each expression (representing a byte) in Object State is in one of

the following three states

◦ Concrete

◦ Known Symbolic

◦ Flushed

 A write request to Object State provides two arguments including

offset of the byte and data to be written

Concrete

Known Symbolic

Flushed

KLEE: Memory Representation

 When offset and data are both constant,

◦ the byte written becomes Concrete and

◦ read requests afterwards always get the data written this time

Concrete

Known Symbolic

Flushed

KLEE: Memory Representation

 When offset is constant but data is non-constant,

◦ the byte written becomes Known Symbolic and

◦ read requests afterwards always get the data written this time

Concrete

Known Symbolic

Flushed

KLEE: Memory Representation

 When offset is non-constant

◦ All Concreate and Known Symbolic bytes are flushed to an Update List

in the form of write requests with <offset, value> pairs

◦ All bytes become Flushed

◦ Read from a Flushed byte gets a READ expression

 For read requests with non-constant offset, the bytes are also

flushed

Concrete

Known Symbolic

Flushed

KLEE: Execution State

 Execution State represents a snapshot of the program under

execution.

 Execution of the program is regarded as transitions among multiple

Execution States.

KLEE: Execution State

 What is in an Execution State?

◦ Stack

 Stack is a vector of stack frames.

 Each stack frame includes

◦ value of local variables, each of which is represented by an expression

and

◦ Allocation of local storage recorded by a list of Memory Object

KLEE: Execution State

 What is in an Execution State?

◦ Stack

◦ Memory states

 Memory states are represented by a list of Memory Objects

(recording ranges) with their corresponding Object States

(recording values).

 Mapping from Memory Objects to Object States is maintained as

an Address Space.

KLEE: Execution State

 What is in an Execution State?

◦ Stack

◦ Memory states

◦ Program counter

 Represented by a wrapper of LLVM Instruction object

（Kinstruction）.

KLEE: Execution State

 What is in an Execution State?

◦ Stack

◦ Memory states

◦ Program counter

◦ Path constraints

 Path constraints are a set of Boolean expressions recording when

this Execution State can be reached

HOW KLEE ANALYZES
PROGRAMS

How KLEE works

The main loop:

 Create initial Execution State and add it to the unexplored Execution

States list L

 while (L is not empty) do

 pick up an Execution State S from L

 execution one instruction of S

 if there is any new Execution State generated

 then add generated Execution State(s) to L

 else solve path constraints and generate a test case

 done

How KLEE Interprets LLVM Bitcode

 Alloca

◦ Format：

◦ When <NumElements> is constant, KLEE will

 allocate an unused memory range,

 create an Object State with the same size,

 initialize the bytes in the Object State with 0xAB,

 assign the base address of the allocated range to <result> and

 insert the allocated range into local storage list in the current stack

frame (for it will be automatically freed when the function returns)

<result> = alloca <type>[, <ty> <NumElements>]

How KLEE Interprets LLVM Bitcode

 Br

◦ Format of branch without condition

◦ KLEE will

 set program counter to the first instruction of the target basic block

br label <dest>

How KLEE Interprets LLVM Bitcode

 Br

◦ Format of branching with condition

◦ KLEE will

 Evaluate <cond>,

 if <cond> is a tautology or a contradiction

 then branch without condition and add the Boolean expression (Eq

<cond> T/F) to path constraints

 else create a copy of the Execution State, branch to different basic

block in different Execution State and add corresponding Boolean

expression to the path constraints

br i1 <cond>, label <iftrue>, label <iffalse>

How KLEE Interprets LLVM Bitcode

 How to copy Execution State

◦ State：copy completely

◦ Memory state：copy Address Space and share Object States till they

are written

◦ Path constraints：copy the container and share expressions

How KLEE Interprets LLVM Bitcode

 Object State: How to copy on write (COW)

◦ Each Address Space has a cowKey initialized to 1

◦ Each Object State has an ownerKey；

◦ When Address Space is copied (including cowKey), cowKey of the new

Address Space is incremented

◦ Each time handling write requests to Object State S, KLEE checks

cowKey of current Address Space A and ownerKey of the S

 If A.cowKey = S.ownerKey, the request is performed to S

 If A.cowKey != S.ownerKey, a copy of S (say S') is created,

S'.ownerKey is set to A.cowKey and the request is performed to S'

KLEE: Optimizations

 Expression simplification

◦ Constant expressions are calculated

◦ Usage of operators is restricted

 e.g. do not use Ult、Uge、Slt、Sge in Boolean expressions

 Constraint rewrite

KLEE: Other Issues Addressed

 Model execution environment

◦ command line options

◦ environment variables

◦ standard libraries

 Execution State picking up policy in the main loop

KLEE: Restrictions

 Because of path explosion, symbolic execution engines can hardly

traverse all Execution State

 KLEE provides some options to restrict the execution space

explored

◦ -max-depth

◦ -max-fork

◦ ……

