SymDrive

Department of Computer Science & Technology
Tsinghua University

e 1. Introduction
® 2. Design
e 3. Evaluation

e 4. Conclusions

e 1. Introduction

® 2. Design
e 3. Evaluation

e 4. Conclusions

|
|
Introduction

e Symbolic: Symbolic device, symbolic execution

e Driver: for testing driver

e =>Sym-Drive

L&

Introduction

e 1. Static-analysis:

o SymGen

e A static-analysis and code transformation tool to speed
testing.

® 2. Checkers:

e Execute in the kernel.

e 3. Execution-tracing tool: -
e For logging the path of driver execution

e Used to compare execution across different drinr.

L&

B Lo %’E
Y

Introduction

e Purpose

e 1. To test driver patches by thoroughly executing all
branches affected by the code changes.

e 2. A debugging tool to compare the behavior of a
functioning driver against a non-functioning driver .

e 3. A general-purpose bug-finding tool and perform broad ;
testing of many drivers with little developer input. i L g

L&

Introduction

e Built on a extended S2E(Selective Symbolic
Execution)
e Why symbolic execution?
- High coverage of code | :

- Executing without device = %

L&

Introduction

e 1. Efficiency

e Avoid path explosion
e Fast enough to apply to every patch
e 2. Simplicity

e Require low developer effort to test a new driver and

support many device classes, buses, and OS.

® 3. Usefulness

e Find bugs that are hard to find.

Rt

L&

e 1. Introduction

o 2. Design

e 3. Evaluation

e 4. Conclusions

Wirtual ['
Test Programs
Machine 00

-

"

| S*,rml:rnllc Execution Engine (S2E) |

Figure 1: The SymDrive architecture. A developer produces
the transformed driver with SymGen and can write checkers
and test programs to verify correctness.

L&

Component

Design

LoC

Changes to S°E
SymGen

Test framework
Checkers

Support Library

Linux kernel changes
FreeBSD kernel changes

Table 1: Implementation size of SymDrive.

L&

1,954
2,681 3
3.002
1.579
153
&1

W aoa el S
T i el
T Ry i, S
o I ’ o 4 .
et e
T AT
R
e
<
.
—F Ty wh
e, .
| : .-
1 A
. b o :
"1 | > ;
Ea ! N =
h=) - 1 -
BE & L. '
) | | 2% Ve
W
'

. 3

Design

e 1. modified S2E

e 2. symbolic device

® 3. a test framework
o 4. SymGen
® 5. Checkers

L&

Modified S2E

e 1. Symbolic Devices

o 2. S2E plugin
e Path scheduling
® 3. Opcode

e Inserted into driver code by SymGen and invoked
directly by the test framework

- 1. control whether memory regions are symbolic when

mapping data for DMA.
- 2. 1influence path scheduling.

- 3. execution-tracing

L&

bolic Devices

® 1. Device Discovery

e 2. Symbolic I/O

e 3. Symbolic Interrupts
e 4. Symbolic DMA

L&

t Framework

e 1. Reaching Deeply

e Favor-success scheduling

e Loop elision
e 2. Increasing Coverage i

e 3. Execution Tracing

SymGen

e 1. Stubs
e Pre-stub & post-stub

e Driver/kernel switch
e 2. Instrumentation

e Start, end, loopbody.

TE A

SymGen

s2e loop before(LINE , loop id);
while(work--) {
tmp 17 = readb(cp->regs + 55);
if(!'(tmp 17 & 16)) goto return label;
stub schedule timeout uninterruptible(10L);
s2e loop body(LINE , loop id);

}
s2e loop after(LINE , loop id);

Figure 2: SymGen instruments the start, end, and body of
loops automatically. This code, from the 8139cp driver, was
modified slightly since SymGen produces preprocessed out-
put.

4

e Example:

/* Test #1 */ void pcl register driver check(...) {
if (precondition) {

assert (state.registered == NOT CALLED);
set state (&state.registered, IN PROGRESS);
set driver bus (DRIVER PCI);

else /* postcondition */ { ool
if (retval == 8) set state (&state.registered, DH}:?AiTﬁ
else set state (&state.registered, FAILED); :

Checkers

e 1. Detect driver/kernel interface violations

e 2. Use support library to simplify development

e State variables

- Track the state of the driver and current thread.

e Tracker object gt
. ..y-{?""'

- Record kernel objects currently in use in the driver.

e Generic checkers

Checkers
e 1. Execution Context checker
o E.g.

- Verity that flags passed to memory-allocation functions such
as kmalloc are valid in the context of the currently executing
code.

e 2. Kernel API Misuse

e State variables provide context for these tests.

Checkers

e 3.Collateral Evolutions

“Collateral evolutions occur when a small change to a
kernel interface necessitates changes in many drivers
simultaneously.”

e E.g. recent kernel network drivers:

— et _device->trans start 1S constant across start_xmwit function
calls

° 4. Memory Leaks

routines.

L&

Checkers

/* Test #2 */ void kmalloc check

(..., vold *retval, size t size, gfp t flags) {
if (precondition) N
mem flags test(GFP ATOMIC, GFP KERNEL, flags); i

else /* postcondition */
generic allocator(retval, size, ORIGIN KMALLOC);

e 1. Introduction
® 2. Design

e 3. Evaluation

e 4. Conclusions

Driver | Class || Bugs | LoC | Ann | Load | Unld.

a8 975% | Compass 4 0H2o O 022] 008

mied o™ | Compass 3 308 0O 01w] 004

tleG2x(* Control 2 260 0 006 0:05

med000 Data Ac. 1 5,394 2 1:17 1:04

phantom Haptic 0 436 0O 16] 0:13 .

Ip5523+ LED Ctl. 2 B2a 0 226 O:19 Environment:

apdsOB02* | Light 0 256 1 0:31 0:21

8139¢p | Net o wew| 1] 151 037 Ubuntu 10.10

81390 | Net 2 1904 3 328 0:35 4-core Intel 2.50GHz Q9300 CPU

beZnet Met 7 3,352 2 4:49 1:39

dizk Net 1| 1ess| 5| 252 035 8GB memory

e 1000 Met 3| 13.971 20 429 201 : :

3l Not sl 7l el ogr Single-threaded mode SymDrive

forcedeth Met 1 5,064 2 4:28 051

ksRBs 1" Met 3 1.229 0 2:05 0:13 .

penetd2 | Net 1| 2342 | 1| 2w | 027 Operations:

w9 Met 0] 2.256 0] 10:41 0:22 >

pluta? Media 2 591 30 145 [101 1. Run SyrnGen OV.CI the.dﬂvet

econet Proto. 2 818 0 o011 | 011 2. Define a symbolic device and boot :
ens1371 Sound o] 2112 5 | 2107 4:48

al026* | Voice 1| 1116 1| 034 | 003 the SymDrive VM. P
ed Ne 0 304 0] 049 0:13 3. Load the driver with zzsmod and wait *ﬂ
e Met 0 3,440 3| el 021 BT e
tl Net o 2152 1| 200| 008 for initialization to complete successfully. wﬁg«*‘ﬁ
e5137x Sound 1 1.68A 2| 5730 009 1 Kkl d 1
aestro Sound 1 1.789 2| 1751 0:27 . BXecute a workloa (optlona). !

Table 2: Drivers tested. Those in italics run on Android- 5. Unload the driver. |
based phones, those followed by an asterisk are for embed- i
ded systems and do not use the PCI bus. Drivers above the
line are for Limix and below the line are for FreeBSD. Line
counts come from CLOC [1]. Times are in minute:second
format, and are an average of three runs.

L&

Evaluation

Kernel / || Cross

Bug Type Bugs | Checker || EntPt | Paths | Ptrs

Hardware Dep. 7 6/1 4 6 6

API Misuse 15 718 6 5 1

Race 3 3/0 3 2 3

Alloc. Mismatch 3 0/3 3 0 3

Leak 7 0/7 6 1 7

Driver Interface 3 0/3 0 2 0 L
Bad pointer 1 1/0 0 0 1 S
Totals 39 17/22 22 16| 21 { ﬂ

Table 3: Summary of bugs found. For each category, we
present the number of bugs found by kernel crash/warning
or a checker and the number that crossed driver entry points
(“Cross EntPt”), occurred only on specific paths, or required
tracking pointer usage.

® 39 bugs:
17 bugs:tixed between 2.6.29 to 3.1.1

7 bugs:unable to establish because of significant driver

TE A

changes.
5 bugs:submitted and confirmed.

Others:not in Iinux kernel

Evaluation

® Test a new driver: phantom driver

e Total time: Th 45m
- Configured symbolic hardware
- Wrote a user-mode test program.

- Executed the driver four times.
e SymGen < 1min

e LExecute 38min

Evaluation

L&

Touched Time

Driver Funcs. Coverage CPU Latency

&1 39to0 Q3% 83% 2h36m [h(0m
al026 05% 80 % I5m [3m
apdsYs02 83% 90% l4m Tm
econet 51% 61 % 42m 26m
ensl 371 T4% 604% *8h23m #2hlom
Ip5523 Q5% 83% 2lm Sm
med 000 82% 68% | *26h57Tm *10h25m
mmc3 [xx 100% 83% I[4m 26m
phantom 86% 84 % 38m 32m
pluto2 78% 90 % 19m 6m
tle62x0) 100% 85% l6m [2m
esl37x O7% T0% [h22m S58m
rl 84% T1% I13m 10m

8139too driver:

Table 4: Code coverage.

real hardware:77% Funcs 75% Coverage

symbolic hardware:93% Funcs 83% Coverage

=i

....

e Patch Testing

e Favor-success scheduling

e High coverage mode.

Evaluation

Touched Time
Driver Funcs. Coverage | Serial Parallel
813900 100% 96% 9m Sm
ksB&51 100% 100% l6m sm
1p5523 100% 97% [2m 12m

Table 5: Patched code coverage.

Evaluation

e Comparison to other tools

e S2E(8139too)
- Coverage: 33% Func 69% Cover vs 93% Func 83% Cover

- To achieve higher coverage
= a plugin to implement a relaxed consistency model

= 73 distinct kernel functions

- Binary annotation
e Static analysis tools
- 39170 vs 715

e Kernel debug support
- A lot output
- simplicity

L&

e 1. Introduction
® 2. Design
e 3. Evaluation

e 4. Conclusions

Conclusions

e 1. Symbolic Execution
e 2. combine test framework and static analysis

e 3. lowering the barriers to testing
e find bugs in mature driver code of a variety of types

o allow developers to test driver patches deeply. =

e Thanks!

