
SymDrive

Department of Computer Science & Technology
Tsinghua University

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

Introduction

 Symbolic: Symbolic device, symbolic execution

 Driver: for testing driver

 =>Sym-Drive

Introduction

 1. Static-analysis:

 SymGen

 A static-analysis and code transformation tool to speed

testing.

 2. Checkers:

 Execute in the kernel.

 3. Execution-tracing tool:

 For logging the path of driver execution

 Used to compare execution across different driver.

Introduction

 Purpose

 1. To test driver patches by thoroughly executing all

branches affected by the code changes.

 2. A debugging tool to compare the behavior of a

functioning driver against a non-functioning driver .

 3. A general-purpose bug-finding tool and perform broad

testing of many drivers with little developer input.

Introduction

 Built on a extended S2E(Selective Symbolic

Execution)

 Why symbolic execution?

- High coverage of code

- Executing without device

Introduction

 1. Efficiency

 Avoid path explosion

 Fast enough to apply to every patch

 2. Simplicity

 Require low developer effort to test a new driver and

support many device classes, buses, and OS.

 3. Usefulness

 Find bugs that are hard to find.

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

Design

Design

Design

 1. modified S2E

 2. symbolic device

 3. a test framework

 4. SymGen

 5. Checkers

Modified S2E

 1. Symbolic Devices

 2. S2E plugin

 Path scheduling

 3. Opcode

 Inserted into driver code by SymGen and invoked

directly by the test framework

- 1. control whether memory regions are symbolic when

mapping data for DMA.

- 2. influence path scheduling.

- 3. execution-tracing

Symbolic Devices

 1. Device Discovery

 2. Symbolic I/O

 3. Symbolic Interrupts

 4. Symbolic DMA

Test Framework

 1. Reaching Deeply

 Favor-success scheduling

 Loop elision

 2. Increasing Coverage

 3. Execution Tracing

SymGen

 1. Stubs

 Pre-stub & post-stub

 Driver/kernel switch

 2. Instrumentation

 Start, end, loopbody.

SymGen

Checkers

 Example:

Checkers

 1. Detect driver/kernel interface violations

 2. Use support library to simplify development

 State variables

- Track the state of the driver and current thread.

 Tracker object

- Record kernel objects currently in use in the driver.

 Generic checkers

Checkers

 1. Execution Context checker

 E.g.

- Verify that flags passed to memory-allocation functions such

as kmalloc are valid in the context of the currently executing

code.

 2. Kernel API Misuse

 State variables provide context for these tests.

Checkers

 3.Collateral Evolutions

 “Collateral evolutions occur when a small change to a

kernel interface necessitates changes in many drivers

simultaneously.”

 E.g. recent kernel network drivers:

- net_device->trans_start is constant across start_xmit function

calls

 4. Memory Leaks

 Use object tracker to store an allocation’s address and

length to ensure allocation and freeing use paired

routines.

Checkers

 E.g.

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

Environment:

 Ubuntu 10.10

 4-core Intel 2.50GHz Q9300 CPU

 8GB memory

Single-threaded mode SymDrive

Operations:

 1. Run SymGen over the driver.

 2. Define a symbolic device and boot

the SymDrive VM.

 3. Load the driver with insmod and wait

for initialization to complete successfully.

 4. Execute a workload(optional).

 5. Unload the driver.

Evaluation

Evaluation

 39 bugs:

 17 bugs:fixed between 2.6.29 to 3.1.1

 7 bugs:unable to establish because of significant driver

changes.

 5 bugs:submitted and confirmed.

 Others:not in Linux kernel

Evaluation

 Test a new driver: phantom driver

 Total time: 1h 45m

- Configured symbolic hardware

- Wrote a user-mode test program.

- Executed the driver four times.

 SymGen < 1min

 Execute 38min

Evaluation

8139too driver:

 real hardware:77% Funcs 75% Coverage

 symbolic hardware:93% Funcs 83% Coverage

Evaluation

 Patch Testing

 Favor-success scheduling

 High coverage mode.

Evaluation

 Comparison to other tools

 S2E(8139too)

- Coverage: 33% Func 69% Cover vs 93% Func 83% Cover

- To achieve higher coverage

 a plugin to implement a relaxed consistency model

 73 distinct kernel functions

- Binary annotation

 Static analysis tools

- 39170 vs 715

 Kernel debug support

- A lot output

- simplicity

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

Conclusions

 1. Symbolic Execution

 2. combine test framework and static analysis

 3. lowering the barriers to testing

 find bugs in mature driver code of a variety of types

 allow developers to test driver patches deeply.

Q & A?

 Thanks!

