
SymDrive

Department of Computer Science & Technology
Tsinghua University

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

Introduction

 Symbolic: Symbolic device, symbolic execution

 Driver: for testing driver

 =>Sym-Drive

Introduction

 1. Static-analysis:

 SymGen

 A static-analysis and code transformation tool to speed

testing.

 2. Checkers:

 Execute in the kernel.

 3. Execution-tracing tool:

 For logging the path of driver execution

 Used to compare execution across different driver.

Introduction

 Purpose

 1. To test driver patches by thoroughly executing all

branches affected by the code changes.

 2. A debugging tool to compare the behavior of a

functioning driver against a non-functioning driver .

 3. A general-purpose bug-finding tool and perform broad

testing of many drivers with little developer input.

Introduction

 Built on a extended S2E(Selective Symbolic

Execution)

 Why symbolic execution?

- High coverage of code

- Executing without device

Introduction

 1. Efficiency

 Avoid path explosion

 Fast enough to apply to every patch

 2. Simplicity

 Require low developer effort to test a new driver and

support many device classes, buses, and OS.

 3. Usefulness

 Find bugs that are hard to find.

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

Design

Design

Design

 1. modified S2E

 2. symbolic device

 3. a test framework

 4. SymGen

 5. Checkers

Modified S2E

 1. Symbolic Devices

 2. S2E plugin

 Path scheduling

 3. Opcode

 Inserted into driver code by SymGen and invoked

directly by the test framework

- 1. control whether memory regions are symbolic when

mapping data for DMA.

- 2. influence path scheduling.

- 3. execution-tracing

Symbolic Devices

 1. Device Discovery

 2. Symbolic I/O

 3. Symbolic Interrupts

 4. Symbolic DMA

Test Framework

 1. Reaching Deeply

 Favor-success scheduling

 Loop elision

 2. Increasing Coverage

 3. Execution Tracing

SymGen

 1. Stubs

 Pre-stub & post-stub

 Driver/kernel switch

 2. Instrumentation

 Start, end, loopbody.

SymGen

Checkers

 Example:

Checkers

 1. Detect driver/kernel interface violations

 2. Use support library to simplify development

 State variables

- Track the state of the driver and current thread.

 Tracker object

- Record kernel objects currently in use in the driver.

 Generic checkers

Checkers

 1. Execution Context checker

 E.g.

- Verify that flags passed to memory-allocation functions such

as kmalloc are valid in the context of the currently executing

code.

 2. Kernel API Misuse

 State variables provide context for these tests.

Checkers

 3.Collateral Evolutions

 “Collateral evolutions occur when a small change to a

kernel interface necessitates changes in many drivers

simultaneously.”

 E.g. recent kernel network drivers:

- net_device->trans_start is constant across start_xmit function

calls

 4. Memory Leaks

 Use object tracker to store an allocation’s address and

length to ensure allocation and freeing use paired

routines.

Checkers

 E.g.

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

Environment:

 Ubuntu 10.10

 4-core Intel 2.50GHz Q9300 CPU

 8GB memory

Single-threaded mode SymDrive

Operations:

 1. Run SymGen over the driver.

 2. Define a symbolic device and boot

the SymDrive VM.

 3. Load the driver with insmod and wait

for initialization to complete successfully.

 4. Execute a workload(optional).

 5. Unload the driver.

Evaluation

Evaluation

 39 bugs:

 17 bugs:fixed between 2.6.29 to 3.1.1

 7 bugs:unable to establish because of significant driver

changes.

 5 bugs:submitted and confirmed.

 Others:not in Linux kernel

Evaluation

 Test a new driver: phantom driver

 Total time: 1h 45m

- Configured symbolic hardware

- Wrote a user-mode test program.

- Executed the driver four times.

 SymGen < 1min

 Execute 38min

Evaluation

8139too driver:

 real hardware:77% Funcs 75% Coverage

 symbolic hardware:93% Funcs 83% Coverage

Evaluation

 Patch Testing

 Favor-success scheduling

 High coverage mode.

Evaluation

 Comparison to other tools

 S2E(8139too)

- Coverage: 33% Func 69% Cover vs 93% Func 83% Cover

- To achieve higher coverage

 a plugin to implement a relaxed consistency model

 73 distinct kernel functions

- Binary annotation

 Static analysis tools

- 39170 vs 715

 Kernel debug support

- A lot output

- simplicity

 1. Introduction

 2. Design

 3. Evaluation

 4. Conclusions

Conclusions

 1. Symbolic Execution

 2. combine test framework and static analysis

 3. lowering the barriers to testing

 find bugs in mature driver code of a variety of types

 allow developers to test driver patches deeply.

Q & A?

 Thanks!

