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Abstract—Due to the rise of mobile devices, there is
an increasing interest in the optimizations of the mobile
operating system both for performance and code size.
However, the complexity of the mobile operating system
makes these optimizations more challenging.

This paper presents extended call graph (ECG) for
modeling the access relations of functions and data objects
of all the native code of Android except those in the Linux
kernel. We identified that the ECG of Android is a typical
complex network. It exhibits the basic features of scale-free
topology and small-world structure. Based on these results,
this paper found and eliminated the “isolated” vertices and
subgraphs (without indegree and outdegree) in the graph
to build a better connected and centralized graph. The
largest connected subgraph before optimization contains
only 87.0% of all the vertices while the subgraph after
optimization contains 99.9% of all the vertices. Thus, most
of the dead code in libraries and framework are eliminated
automatically.

This method is applied to Android-x86 on ASUS Eee
PC. It achieves about 26.7% code size reduction in total
and up to 1.3% speedup in floating-point computation. It
also can be adopted to model, analyze and optimize other
mobile operating systems developed in C/C++ and assembly
languages. This work not only provides a foundation of
optimizing Android operating system for both performance
and code size, but also helps us to understand and develop
the complex software system more efficiently.

I. INTRODUCTION

With the rise of mobile devices, such as smartphones
and pads, there is an increasing need to optimize the
mobile operating system both for performance and code
size. However, the complexity of the modern operating
system like Android[1] makes these optimizations more
challenging. Android is the most popular operating sys-
tem for mobile devices, accounting for about 50% of the
smartphone market share in the 4th quarter of 2011[2].

Android is composed of a number of complex soft-
ware systems. As shown in Figure 1, it adopts a lay-
ered architecture[3]. All applications are written in the
Java programming language (sometimes with Java native
interface, i.e. JNI[4], to call native code). The applica-
tion framework includes both Java and C/C++ code. It
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Fig. 1. Android architecture.

TABLE I
CODE LINE STATISTICS OF ANDROID-X86 3.2.2 (IN KILO,

GENERATED BY SLOCCOUNT[5]).

C/C++ Asm Java Others Total
Applications 182 0 525 1 708

App framework 783 7 638 4 1,432
Android runtime 282 53 538 7 880

Libraries 8,073 127 568 467 9,234
Linux kernel 9,549 241 0 27 9,817

Others 346 0.1 257 22 626
Total 19,215 428 2,526 528 22,697

provides services, such as activity manager and window
manager, for applications. The libraries and Android
runtime are mainly implemented in C/C++. Underneath
all of the above is the Linux kernel.

The total physical source lines of code of Android-x86
3.2.2 (version 20120215) is 22,697k. It is developed in
Java, C/C++ and other programming languages. Table I
shows the code line statistics of different components.

The system contains a lot of dead code that are
completely unreachable, because the source code come
from different developers, and some from open source
communities whose main platforms are not mobile sys-
tems. Android uses its own C library, called “Bionic”,



composed partly from the BSD C library combined with
Android original code[6]. On the x86 architecture, the
size of a stripped Bionic library is only 26% of that of
a stripped GNU C Library[7]. It achieves the small code
size by not providing unnecessary interfaces. For exam-
ple, many inter-procedural communication interfaces are
not implemented because Android has its own “intent”
service[6].

Therefore, it would be valuable to eliminate the dead
code from all the native code of Android except those in
the Linux kernel (There are about 9,507k lines of C/C++
and assembly, as shown in the shadowed cells in Table I).
But there are two fundamental challenges that must be
addressed first.

Challenge #1: How to model the complex Android
system? With a sound theoretical basis and a variety of
applications, complex networks offer a perfect nonlinear
abstraction when analyzing applications to real-world
problems[8]. Extensive research[9], [10] has confirmed
that class collaboration graphs and static call graphs of a
large scale software such as eMule, Openvrml, MySQL,
and Linux Kernel display scale-free topology and small-
world properties of complex networks, which have also
been found in networks built with inter-package de-
pendency in Linux distributions[11], [12]. Most of the
researches on network of open-source software focus on
single software or on the package-level relations. None
of them handles function-level relations in multilingual
complex systems as Android.

Challenge #2: How to identify and eliminate the
dead code in Android? Dead code is common in real-
world software[13]. Most modern compilers build a
control flow graph to eliminate dead code in a function.
Some compilers perform a similar operation on the
compilation-unit level to remove functions and objects
that are local to a compilation unit but never used. More
sophisticated compilers can perform inter-procedural or
link-time optimizations[14][15][16] to remove unused
functions and objects on the program level, which
usually involves a call graph for the whole program.
However, these existing methods have no ability to solve
the problem we face here.

Our Contributions. This paper proposes an optimiza-
tion method based on modeling and analyzing the An-
droid system as complex networks. Based upon the
previous work in open source software analysis and
link-time optimization, this paper makes the following
contributions:

• Our work presents extended call graph (ECG) for
modeling the relations of functions and data objects

in relocatable files1. Then we build the extended
call graph of all the native code (C/C++/Asm) of
Android except those in the Linux kernel.

• We identified that the ECG of Android is a typical
complex network. It exhibits the basic features of
scale-free topology and small-world structure. We
also found that there are many “isolated” vertices
and subgraphs (without indegree and outdegree) in
the graph. It means that there are plenty of vertices
that have no interactions with the rest of the graph.

• Based on these results, this paper eliminates the
“isolated” vertices and to build a better connected
graph. The original graph contains only 87.0% of
all the vertices while the graph after optimization
contains 99.9% of all the vertices. Thus, most of
the dead functions and inaccessible variables in li-
braries and framework are eliminated automatically.

To our best knowledge, this is the first work to con-
struct and analyze the complete extended call graph for
functions and data objects of Android system, and then
refine the graph to perform system-wide dead code elim-
ination. This method is applied to Android-x86 3.2.2. It
achieves about 26.7% code size reduction in total and
up to 1.3% speedup in floating-point computation.

The rest of this paper is organized as follows: we
first present an informal overview of our approach to
analyze and optimize Android system (Sec II). Then we
define, construct and analyze the extended call graph of
Android system as complex networks (Sec III). Based
on these results, we present a system-wide binary rewrite
optimization to eliminate dead code (Sec IV), and show
the evaluation of the real system (Sec V). Finally we
discuss related works (Sec VI), draw conclusions and
discuss future work (Sec VII).

II. OVERVIEW

Figure 2 outlines the steps of our analysis and op-
timizations. In the default build process of a system
with multiple binaries, each binary (executable or shared
library) is compiled and linked separately, and the com-
piler and linker only use information from the source
files for one binary. In a complex system such as
Android, binaries produced in this manner are usually
not optimal. For example, a shared library may contain
externally visible symbols that are never actually used.

In our method, we construct a whole-system extended
call graph (ECG) by extracting information from re-
locatable object files. The ECG is a directed graph.

1 Relocatable files are commonly called “object files.” Because we
directly manipulate ELF files, we follow the ELF specification[17] to
use “relocatable files” or “relocatable object files”, while “object files”
includes relocatable, executable and shared object files.

2



Source files

Compile

Binaries

Build graph

Analyze
graph

Optimized
binaries

Optimize

LinkLink

Relocatable
object files

Extended
call graph

Fig. 2. Overview of our approach (right). Compare with the default
build process (left).

Each vertex is a section in a relocatable object file,
containing one or more functions or data objects. An
edge in the graph represents a “use” of the successor by
the predecessor. There are also other uses of a section the
edges cannot represent. For example, the startup code of
an executable is called by the OS, and some functions
can be called by Java code through JNI. Therefore, we
also include a set of entry points, i.e. sections that might
be used in a manner not represented by any edge. A
more formal definition of the ECG is given in Sec III-A.

The ECG exhibits scale-free (SF) topology[18] and
small-world (SW) structure[19]. The former states that
the proportion of vertex P (k) which have k degrees
decays as a power law P (k) ≈ C ∗ k−γ . The latter
refers to the fact that network tends to have small
average path length between vertices along with a large
clustering. We also use PageRank[20][21] to evaluate
the relative importance of vertices. The results suggest a
correlation between the PageRank and degree of a vertex.
Most functions with the greatest PageRank and degrees
are related to dynamic memory operations, which are
frequently used in C and C++. Furthermore, the ECG
consists of a great number of connected components, the
largest of which contains more than 87% of all vertices
while no other component contains more than 10.

From the results of the complex networks analysis,
we conjecture that substantial parts of the Android code

are actually unreachable and never used. In order to
identify them more accurately, we define the significant
subgraph of the ECG, which consists of vertices that are
actually reachable and must be retained. Vertices not in
the significant subgraph can be eliminated from the final
binaries. The significant subgraph can be found with a
straightforward graph search algorithm. We rewrite the
relocatable files to mark sections not in the significant
subgraph in a way that enables the linker to discard them
at link time.

Finally, we evaluate the size, correctness and perfor-
mance of the optimized system and compare them with
those of the original system. The evaluation suggests a
substantial reduction in size, unchanged correctness, and
improved performance.

III. ANDROID AS COMPLEX NETWORKS

A. Definition of Extended Call Graph
The Extended Call Graph is defined in terms of relo-

catable object files. Relocatable object files are language
independent and simpler than high-level languages. They
also retain more useful information than final binaries.
Each relocatable object file is composed of a number of
sections. Each section contains one or more entities.

Definition 1. A data object is an object statically allo-
cated in a data, rodata, bss or similar section. An entity
is either a function or a data object.

In C/C++, data objects include all global and lo-
cal static variables and objects, including compiler-
generated objects such as virtual function tables.

A relocatable object file can be denoted by the set of
sections in it, and a section by the set of entities in it, e.g.
R = {S1, S2} denotes a relocatable object file containing
sections S1 and S2, and S1 = {e1, e2} denotes a section
containing entities e1 and e2.

Definition 2. Section S is a direct user of section S′, or
S directly uses S′, if there is at least one entry relative
to S′ or any e′ ∈ S′ in the relocation data for S.

From the source-level perspective, S is a direct user
of S′ if one of the following conditions holds:

• A function e ∈ S directly calls a function e′ ∈ S′

or assigns the address of e′ to a pointer. A function
call is direct if the the name of the callee is known
at compile time, as opposed to a call through a
function pointer whose value varies depending on
run-time context. Therefore, a call made through
the procedure linkage table (PLT) is direct though
a function pointer is involved in implementation
details, while a function call through a virtual
function table is not direct.
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• A function e ∈ S reads, writes, or takes the address
of, data object e′ ∈ S′.

• A data object e ∈ S or, if e is of an aggregate type,
one of its members, is initialized by the address of
e′ ∈ S′, optionally plus a constant offset.2

Definition 3. A section S is an entry point if any of the
following conditions holds:

1) Section S contains the startup code of a process;
2) There exists an entity e ∈ S that may be used

through dynamic binding at run time;
3) Section S is not a regular code or data section

(text, data, rodata, bss).

An entry point is a section which can be used at run
time, but such use is not reflected by the “direct use”
relation in Definition 2. Section III-B provides a more
detailed description of entry points.

Definition 4. The extended call graph for a system
(compiled to relocatable object files) is a directed graph
G = (V,E,R), where vertex set V is the set of sections
in relocatable object files, edge set E = {(S, S′) ∈
V × V : S directly uses S′}, and R ⊆ V is the set
of entry points.

Normally, the compiler places entities defined in the
same compilation unit and of the same type in one
section. This default behavior would render the ECG
too coarse. Fortunately, many modern compilers have
a feature to compile each function and data object into
a separate section. Hereinafter it is assumed the feature
is always enabled, and each section contains exactly one
entity, with few exceptions.3 Sometimes a single-entity
section is not strictly distinguished from the entity in it.

B. Construction of Extended Call Graph

We first define some related denotations.

Definition 5. Given entity e, Sym(e) denotes the set
of all its names (including aliases). Given section S,
Sym(S) =

⋃
e∈S Sym(e) denotes the set of names of

all entities in it.

Definition 5 helps handle aliases. In relocatable object
files, all names of an entity are equally entered in the
symbol table, without distinction between a “real name”
and an alias. For example, if function (denoted by e) foo

2 The offset is typically used to get the address of a member of an
aggregate type. Using an offset to get the address of another entity is
unsafe because the compiler and linker can reorder entities, so normally
we can assume no code intends such an effect.

3The exceptions are string sections and handwritten assembly.

has an alias bar, the section (denoted by S) for the func-
tion may be named .text.foo or .text.bar, and
S = {e}, Sym(S) = Sym(e) = {"foo","bar"}.

Definition 6. Given symbol name s, Sec(s) denotes
the set of sections which has an entity named s, i.e.
Sec(s) = {S : s ∈ Sym(S)}.

Definition 7. Given section S, SecUse(S) denotes the
set of sections in the same relocatable object file which
are directly used by S, SymUse(S) denotes the set of
symbol names which are referenced in the relocatable
data of S but cannot be resolved in the same relocatable
object file, and Use(S) denotes the set of sections in the
whole system that are directly used by S.

When a section S references a symbol name s, i.e.
s ∈ SymUse(S), the actually used section is in Sec(s).
It is possible that section S may use different sections in
Sec(s) in different contexts. (For example, the process
startup code calls different main functions when linked
into different executables.) Therefore we have the fol-
lowing conclusion:

Theorem 1. For a section S, Use(S) ⊆ Use′(S), where

Use′(S) = SecUse(S) ∪
⋃

s∈SymUse(S)

Sec(s).

The steps to construct the ECG are as follows:
Step 1. Compile Android with additional compiler

options so that each entity is compiled into a separate
section in the relocatable object file.

Step 2. Read the relocatable object files and collect the
following data: V : the set of sections in all relocatable
object files; Sym(e) for each entity e ∈ S, ∀S ∈ V ;
Sym(S), SecUse(S) and SymUse(S) for each section
S ∈ V . See Definitions 5 and 7.

With these data, Use′(S) can be computed for each
section S. See Definitions 6, 7 and Theorem 1.

Step 3. Merge data from Step 2 to get the set of edges:
E = {(S, S′) ∈ V × V : S′ ∈ Use(S)}.

However, it is a challenge to compute Use(S) accu-
rately for some sections, where a superset of Use(S)
can be used as a conservative fallback. We first compute
Use′(S) (see Theorem 1), and then try to remove some
elements which are not in Use(S) according to other
information (such as strong and symbol symbols). As a
result, the computed set E may contain slightly more
edges than ideal. The percentage of such false edges is
estimated to be below 0.5% in the ECG for Android.

Step 4. Get the set R of entry points. In consistence
with Definition 3, identify three types of entry points:
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Program entry point. A program entry point is where
the execution of a process begins. For a C/C++ program,
it is the startup code provided by the C library and
identifiable by a platform-dependent special name. The
startup code calls the main function and code which
needs to run outside main such as constructors of global
C++ objects.

Dynamic binding of shared libraries. An executable or
shared library, or dynamic shared object (DSO), may use
entities in another DSO by linking against that DSO, in
which case the relations are reflected in the edge set E.
It may also load a DSO at runtime and use an entity in
it. We need to be able to predict statically which entities
may be used in such manner.

In many cases, the caller uses a string literal as
the name for the entity to be dynamically bound to.
Therefore, we scan all read-only data sections in all
relocatable object files, and if a symbol name s is found,
the name is assumed to be used for dynamic binding at
some point and all sections in Sec(s) are marked as
entry points.

The above analysis does not cover strings that are
composed at run time. In Android, such strings are
mainly related to the JNI, which enables Java code to call
native code written in C/C++, and vice versa[4]. When
Java calls a native function, the Java virtual machine
(JVM) dynamically binds to the function in a DSO.
The JVM recognizes some special name patterns4 in
the DSO, so we mark sections containing functions of
those patterns as entry points. Functions in the DSO
can also be “registered” to the JVM, but their addresses
are already taken by a function recognized by the JVM
which calls the register function.

The use of dynamic binding is relatively uncommon
in Android. We searched all source code for use of
relevant functions, and determined there is only one
additional use of dynamic binding5 not covered by the
above analyses. After adding several related sections
to set R of entry points, we conclude that set R now
contains all sections that may be dynamically bound to.

The method used here is very conservative, in order
to guarantee zero false negative at the cost at possibly
a large number of false positives. We will demonstrate
in Section V that the results are still very useful despite
the false positives.

Special sections. Sections with special names (not
beginning with .text, .data, .rodata or .bss)
have special meanings and can be used in a way not

4JNI_OnLoad, JNI_OnUnload and
Java_ClassName_FunctionName

5Related to ALSA sound library.

TABLE II
PARAMETERS OF EXTENDED CALL GRAPH G.

n 286,893 R∗ 17,618
m 25,637,355 L∗ 92,978
Di 17,042 I∗ 36,944
Do 8,709 S 37,003
Da 89 Sm 249,728

reflected by any edge, so they are also added to set R,

C. Analysis of ECG
In order to achieve a global understanding of the

ECG of Android system, first we present some basic
parameters of the graph G = (V,E,R).

Table II presents some basic parameters that help
achieve a global understanding of the ECG, there are
n = 286893 vertices and m = 25637355 edges in this
ECG. Among those, the highest indegree6 is Di = 17042
while the highest outdegree7 is Do = 8709, and the
average degree is Da = 89. We define “root”(R∗) as
vertices with only outdegree, “leaf”(L∗) as those with
only indegree and “isolated”(I∗) as those with neither,
then we get as many as 17618 “root”, 92978 “leaf” and
36944 “isolated” vertices, meaning that there are plenty
of vertices that do not have much interaction with the
rest of the graph, which provides the potential for the
optimization discussed in later sections.

Furthermore, the graph can be divided into S = 37003
connected components, so the complete graph G is given
by G = ∪iGi. The largest subgraph actually contains
Sm = 249728 vertices, more than 87.0% of the whole
graph, leaving the rest 37002 subgraphs extremely small
and isolated, each with no more than 10 vertices.

Typical complex networks often exhibit the two basic
features, the scale-free (SF) topology[18] and small-
world (SW) structure[19]. The SF topology states that
the proportion of vertex P (k) which have k degrees
decays as a power law P (k) ≈ C ∗ k−γ . The SW
structure refers to the fact that network tends to have
small average path length between vertices along with a
large clustering.

The degree distribution of the ECG is shown in Fig 3,
represented in the cumulative way:

P>k =
∑
k′>k

P (k′).

Fig 3 shows that ECG displays scaling, with estimated
exponents γin ≈ 0.48 ± 0.05 for indegree and γout ≈
0.65± 0.05 for outdegree.

6The section with the highest indegree contains WTF::fastFree,
a wrapper of free in WebKit.

7The section with the highest outdegree contains the process startup
code.
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Fig. 3. Log-log plot of cumulative indegree and outdegree distribution
for vertices in call graph G.
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Fig. 4. The importance distribution for vertices in the ECG using
PageRank algorithm. Notice its SF property.

We also adopt the PageRank Algorithm[20], [21]
to evaluate the importance of the vertices in extended
call graph G, and find that the result displays similar
scaling property. PageRank Algorithm is originally used
to measure the relative importance of the vertices within
a set by assigning a numerical weighting to each element.
Generally speaking, important vertices tend to have
higher degrees and are likely to be connected to vertices
which are also important. Figure 4 suggests that the
importance of vertices exhibits a scaling feature with
exponent γ ≈ 1.35 ± 0.05. The entities with top 10
PageRank are displayed in Table III. It suggests that
there exists a high correlation between the PageRank
and indegree/outdegree of a vertex.

The entity names given in the table clearly support
this, because the top 6 are all related to dynamic mem-
ory allocation, which are fundamental and frequently
used. The top function WTF::fastFree is a wrap-

per of free. The free functions in dynamic linker
and libc have equal indegree and PageRank because
Use′(S) is used in place of Use(S) to compute E
(See Sec III-B). At most call sites, the one in dynamic
linker is in Use′(S) − Use(S), but our implementa-
tion is not yet able to reliably determine this. It is
also noticeable that memory deallocation (free) has
higher PageRank than allocation (e.g. malloc). The
reason is that the importance of memory allocation is
divided among malloc, realloc and calloc. How-
ever, data objects __libc_malloc_dispatch and
__libc_malloc_dispatch_default gain high
PageRanks despite low degrees, because they are used
by all three allocation functions. Additionally, 7 of the
top 10 are from bionic, which is the fundamental library

Another basic feature common to complex network is
small-world structure. Normally, the small-world effect
is defined by the mean geodesic (i.e., shortest) distance
l between vertex pairs:

l =
1

1
2n(n− 1)

∑
i>j

dij ,

where dij is the geodesic distance from vertex vi to
vj . However, our ECG contains many isolated vertices,
which have no path to any other vertex. In such case,
the value of l would be infinite. To avoid this problem
we use the following formula:

l∗−1 =
1

1
2n(n− 1)

∑
i>j

d−1
ij ,

so that infinite values of dij contribute a zero to the
numerator of the fraction.

We use a breadth-first search algorithm to calculate the
distances from a given vertex S to every other vertices.
It starts from vertex S, which is at level 0. In the first
stage, we visit all the vertices that are at the distance
of one edge away. When we visit there, we paint as
“visited,” the vertices adjacent to the start vertex S, these
vertices are placed into level 1. In the second stage, we
visit all the new vertices we can reach at the distance
of two edges away from the source vertex S. These
new vertices, which are adjacent to level 1 vertices and
not previously assigned to a level, are placed into level
2, and so on. The BFS terminates when every vertex
has been visited. After we have calculate the distances
between any pair of vertices, we can conclude that the
mean geodesic distance l∗ of G is 5.94.

We can conclude from the parameters shown above
that our extended call graph G is a typical complex
network which exhibits scale-free feature and small-
world paradigm. And despite that there are some highly
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TABLE III
PAGERANK(E-3) RESULT TOP 10.

Num PR Out In Entity Package/Module
1 7.63 4 17,042 WTF::fastFree webkit/libjs
2 5.08 7 4,810 free bionic/linker
3 5.08 3 4,810 free bionic/libc
4 3.94 4 9,818 operator delete bionic/libstdc++
5 3.94 2 12 libc malloc dispatch bionic/libc
6 3.32 10 3 libc malloc default dispatch bionic/libc
7 3.03 27 5,532 WTF::ThreadCondition::broadcast webkit/libjs
8 2.89 4 576 wcscpy bionic/libc common
9 2.66 4 2,748 Effect configure frameworks/libbundlewrapper

10 2.33 0 142 get tls bionic/libc common

isolated vertices, the whole graph G in fact has an
interconnected kernel which contains 87.0% of all the
vertices. At the same time, the PageRank result also
displays scale-free property, which means that there exist
a lot of unimportant vertices. From this perspective, We
can conjecture that in Android operating system, which
is a real-world system, there are a number of entities
which are actually never called or used by others. More
importantly, these entities take up much system space
and may affect system performance. So we have a very
good reason to assume that by eliminating them we can
achieve a smaller system code size and an enhanced
performance.

IV. DEAD CODE ELIMINATION

A. Significant Subgraph of ECG

The analysis of the ECG in the previous section has
implied that there exist a number of sections that can be
safely eliminated from the system. In order to identify
them more accurately, we first define the significant
subgraph of the ECG.

Definition 8. The significant subgraph of ECG G =
(V,E,R) is Ge = (Ve, Ee, R), where Ve is the set
of significant vertices or significant sections, Ve =⋃

S∈R Desc(S). Desc(S) is the set of all descendants
of S in the ECG, including S itself, and Ee is the set
of significant edges, Ee = E ∩ (Ve × Ve).

According to the definition, a significant section is
either an entry point or reachable from an entry point.
Therefore, Ve is the set of all entities that must be
retained in the system, and the rest, i.e. those in V −Ve

can be eliminated. The algorithm to find Ve is a straight-
forward graph search.

B. Rewriting Relocatable Object Files

After finding the set of sections to be eliminated,
V −Ve, we can rewrite the relocatable object files so that
those sections will not be linked into the final binaries.

The GNU linker, which is the default linker for Android,
has a feature known as section “garbage collection.”
If enabled, this feature causes the linker to discard
unreachable sections at link time[22]. This functionality,
combined with the “section-per-entity” compiler feature
(see Section III-B), is capable of eliminating unused
entities at the binary level without the complex inter-
procedural analysis[22]. In our method, the ECG is used
to allow similar dead code elimination at the system
level.

After finding the ECG and its significant subgraph,
we use binary rewriting to modify the relocatable object
files. Specifically, each section S ∈ V − Ve is marked
in a way that enables the linker to know it is safe to be
eliminated.

Step 1. For each externally visible entity in a section
in V −Ve, change the symbol table to make it “hidden.”

Step 2. For each section in V −Ve, clear its relocation
data so that it no longer uses any other section.

Step 3. For each external reference in the symbol
table, remove it if it is no longer useful due to Step
2. This operation changes indices of other symbol table
entries, so it is necessary to revisit all sections and update
references to the symbol table.

Step 4. Re-link all shared libraries and executables.
It should be noted that Steps 2 and 3 are not redundant.

The GNU linker performs the section garbage collection
after merging symbol tables. As a result, external refer-
ences from eliminated sections are retained in the symbol
table of the final binary if Steps 2 and 3 are skipped. It
is not a problem in normal use of the section garbage
collection feature except that the binary is slightly larger
than ideal. In the system-wide optimization, however,
it causes actual problems. We have an example from
Android: Function _WLocale_strcmp in libstlport
calls function wcsncpy in libc, but both are unreachable
and eliminated. If Steps 2 and 3 are skipped, the dy-
namic linking symbol table of libstlport still contains an
external reference to wcsncpy, though both functions

7



TABLE IV
PARAMETERS OF EXTENDED CALL GRAPH G AND Ge .

Para G Ge Diff Percent
n 286,893 218,885 -68,008 -23.7%
m 2.56E+7 2.49E+7 -697,336 -2.7%
Di 17,042 14,483 -2,559 -15.0%
Do 8709 8709 0 0.0%
Da 89 113 +24 +27.0%
R∗ 17,618 1,198 -16,420 -93.2%
L∗ 92,978 87,733 -5,245 -5.6%
I∗ 36,944 167 -36,777 -99.5%
S 37,003 176 -36,827 -99.5%
Sm 249,728 218,691 -31,037 -12.4%
l∗ 5.94 4.50 -1.44 -24.2%

TABLE V
BASIC PARAMETERS OF PACKAGE bionic IN G AND Ge .

Para G Ge Diff Percent
n 900 567 -333 -37.0%
m 54,088 45,381 -8,707 -16.1%
Di 4,811 4,134 -677 -14.1%
Do 46 44 -2 -4.4%
Da 60.1 80.0 +19.9 +33.1%

have been eliminated. The linker then refuses to accept
libstlport as a valid input to create other binaries.

V. IMPLEMENTATION AND EVALUATION

Android mainly runs on ARM, but has also been
ported to several other architectures. The Android-x86
project[23] has been releasing x86 ports since 2009. Its
native code is, by default, built by a modified version
of the GNU toolchain[24][25] shipped with the source
code. The experiments presented in this section are
performed on the honeycomb-x86 branch (version 3.2.2)
of Android-x86[23], pulled from repositories on Feb 15,
2012. The build target is “eeepc-eng.” The built images
are tested on an ASUS Eee PC[26].

The tools to read the relocatable object files, construct
the ECG, find the set of significant sections and rewrite
the relocatable object files are implemented in C++ and
tested on a Linux system. Elfutils[27] is used to handle
details in ELF. The tools used to perform the complex
networks analysis in Section III-C are implemented in
C/OpenMP and run on NUMA-SMP server.

A. Call Graph Connectivity Improved

Table IV shows the basic parameters of the ECG and
significant subgraph Ge.

The average links per vertex Da is raised by 27.0%,
meaning that there exist far few useless vertices. The
percentage of vertices in the largest connected subgraph
is increased from 87.0% to 99.9%. And most of the
smaller isolated subgraphs are eliminated, leaving only

176 better connected ones. In a word, parameters im-
prove surprisingly, making Ge much better connected
and centralized.

When we examine other parameters, as many as 68008
vertices have been eliminated from graph G, leaving
n = 218885. Among “root”, “leaf” and “isolated”, there
is a major decline in the number of “isolated” and “root”
vertices. As a result, the connectivity of graph Ge is
greatly improved. Do remains while Di decreases a little
bit not because the vertex with Di is eliminated but
because some other vertices linking to it were eliminated.

After the optimization, the graph Ge still displays
scale-free and small-world features, the exponents γIn
and γOut remain almost the same as G.
l∗ after optimization decreases by 24.2%. It is because

according to the calculation formula,

l∗−1 =
1

1
2n(n− 1)

∑
i>j

d−1
ij ,

before optimization those unconnected vertex pairs con-
tribute a zero to the numerator of the fraction but
they are still counted in the denominator 1

2n(n + 1),
while after optimization they are eliminated and make
no contribution to the formula at all. In this way, l∗

decreases, which means the connectivity and transitivity
of the graph is increased.

Table V shows the basic parameters of extended call
graph inside bionic. Being one of the most important
packages of Android system, bionic changes drastically
after the optimization. n falls significantly by 37% while
Da raises noticeably by 33% due to the elimination of
unreachable vertices which have links to bionic.

B. Code Size Reduced

Table VI displays the code size of the default and
different optimized builds of Android-x86. Included in
the data are executables and shared libraries, excluding
the Linux kernel. The “dyn*” column includes dynamic
linker symbol tables (dynsym) and string tables for
dynamic linking (dynstr). The “other” column includes
regular symbol tables (symtab) and string tables (strtab),
and other sections which are normally very small. “To-
tal” is larger than “file size” because BSS sections, which
are included in “total”, occupy memory at run time but
no space in disk storage. The text and file size columns
are also displayed in Figure 5.

In the default build (DB), Android-x86 is built without
any modification. Android-x86 by default strips debug-
ging information from binaries.

In the FS build, we strip all information that are
unneeded at run time. Specifically, regular symbol tables
and string tables are stripped, but those needed for
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TABLE VI
COMPARISON OF CODE SIZE OF ALL ELF FILES (EXCLUDING THE LINUX KERNEL) IN ANDROID-X86 (IN KB)

Configuration Sections File sizetext rodata data bss dyn* others total
default build 48,579 7,682 2,668 4,369 3,865 16,116 83,280 79,335

(DB) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)
fully stripped 48,579 7,682 2,668 4,369 3,865 3,218 70,381 66,402

(FS) (-0.0%) (-0.0%) (-0.0%) (-0.0%) (-0.0%) (-80.0%) (-15.5%) (-16.3%)
binary-wide 44,852 7,604 2,622 4,251 3,459 3,133 65,921 62,067

optimization (BWO) (-7.7%) (-1.0%) (-1.7%) (-2.7%) (-10.5%) (-80.6%) (-20.8%) (-21.8%)
system-wide 42,099 7,316 2,555 4,239 2,798 2,949 61,957 58,121

optimization (SWO) (-13.3%) (-4.8%) (-4.2%) (-3.0%) (-27.6%) (-81.7%) (-25.6%) (-26.7%)
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Fig. 5. Comparison of size of files and text sections.

dynamic linking must be preserved; comment sections,
which are normally small and contain information such
as compiler version, are stripped as well.

In the BWO build, the “section-per-entity” feature in
GCC and section garbage collection in the GNU linker
are enabled. In addition, all sections unneeded at run
time are stripped (comment sections, regular symbol
tables and string tables, excluding those for dynamic
linking). The BWO build is the smallest we are able to
achieve with the existing functionalities of the toolchain.
Compared with the default build, the file size is reduced
by 21.8%, and the size of text sections by 7.7%.

In the SWO build, the system-wide dead code elim-
ination described in Sec IV is enabled, and a further
reduction of 6.4% in file size and 6.1% in text sections
is achieved. Compared with the default build, the file
size is reduced by 26.7%, and the text sections 13.3%.

Table VII displays the size data for bionic. As we can
see from the results, bionic still contains a considerable
percentage of dead code though it is specifically written
and optimized for Android.

C. Correctness Preserved

We use Android Monkey[28] to evaluate the cor-
rectness of the optimized system. As a default utility

of Android, Monkey generates pseudo-random streams
of user events such as clicks, touches and gestures, as
well as a number of system-level events[28]. Originally
intended for stress test, it has now gained a wider
range of use, e.g. suspicious software detection[29] and
automated test case generation[30].

The optimized system is expected to respond to each
event in the same way as the original system. In order
to get repeatable results, we specify a fixed seed for the
pseudo-random generator, and force a one-second delay
between consecutive events to ensure that the process of
each event is complete before the next one is sent. In our
experiment, 10000 events are generated, and the original
and optimized systems behave in exactly the same way
and generate logs that differ only in timestamps. The test
covers most of the pre-installed packages in Android.

D. Performance Improved

The method presented in this paper does no modifi-
cation to the code except removing code that will never
be used, so it can be expected that performance remains
unchanged or is slightly improved due to reduced I/O,
memory footprint and cache miss. Experiments have
confirmed this.

A number of performance benchmarks[31] for An-
droid have emerged in recent years, such as AnTuTu-
Benchmark[32], Smartbench[33] and AndroBench[34].
We choose AnTuTu-Benchmark because it tests many
aspects of the system, including memory performance,
CPU integer performance, CPU floating-point perfor-
mance, 2D/3D graphics performance, database I/O and
SD card I/O. Experiments with AnTuTu-Benchmark
2.8.3 on an ASUS Eee PC show an improvement by
1.3% in floating-point performance, and no statistically
significant changes in other figures. No performance
degradation is observed.

Additionally, AnTuTu-Benchmark is a complex appli-
cation which makes use of JNI. Its ability to run on the
optimized system is also an evidence of the correctness
of our optimization.
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TABLE VII
COMPARISON OF CODE SIZE OF BIONIC (IN KB)

Configuration Sections File sizetext rodata data bss dyn* others total
default build 322 29 12 45 27 61 496 452

(DB) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)
fully stripped 322 29 12 45 27 19 454 410

(FS) (-0.0%) (-0.0%) (-0.0%) (-0.0%) (-0.0%) (-68.9%) (-8.5%) (-9.3%)
binary-wide 322 29 12 45 27 19 453 410

optimization (BWO) (-0.0%) (-0.0%) (-0.0%) (-0.0%) (-0.0%) (-68.9%) (-8.7%) (-9.3%)
system-wide 283 27 11 44 20 17 402 361

optimization (SWO) (-12.1%) (-6.9%) (-8.3%) (-2.2%) (-25.9%) (-72.1%) (-19.0%) (-20.1%)

VI. RELATED WORK

Complex Networks. With a sound theoretical basis
and a variety of applications, complex networks offer
a perfect nonlinear abstraction when analyzing appli-
cations to real-world problems[8]. Empirical study of
real-world networks such as computer networks and
social networks largely inspired the research of com-
plex network. In the area of software, massive work
has been dedicated to survey the relationship between
complex networks and the graph constructed by software
components, e.g. packages, files, class, functions, etc.
Valverde et al.[10] studied the topology and hierarchical
relationships among components of various software
packages, and found that all these networks exhibit the
same organization pattern such as scale-free topology
and small-world property. David Wood et al.[35] an-
alyzed software collaboration graphs for open-source
software projects written in Java and found the graphs
produced at package, class and method levels all display
scale-free properties. Alessandro et al.[36] investigated
network properties of four widely used large computer
programs, the Linux kernel, Mozilla, XFree86 and Gimp
from a source file and header file dependency level and
found similar results. For the class dependency level,
Lovro Šubelj et al.[37] discovered that complex networks
not only follow SF and SW phenomena, but also have
the property of community structure. C. R. Myers[9]
studied class graphs of VTK, CVS and abiWord, the call
graphs of the Linux Kernel, MySQL and XMNS, found
their scale-free, small-world topologies and presented a
simple model of software system evolution based on
refactoring processes. Despite the various researches on
network of open-source software, most of these works
focus only on single software, or on the package level.
None of them handles function-level relations in multi-
lingual complex systems as Android.

System optimizations. Early optimizers attempted to
generate better code for a single basic block or a single
function. The optimizer had little information to rely on,

and the ability to produce better code was limited. With
the development of inter-procedural analysis, it became
possible to optimize a compilation unit and a binary as a
whole. Later, methods were developed to use even more
information, such as using information from all sources
in a multiple-binary system. Ho et al.[38] used cross-
module optimization to eliminate indirect addressing
and reduce the run-time overhead of dynamically-linked
programs. Acharya and Saltz[39] used inter-procedural
analysis to identify names that must be linked at different
sites and use this information to optimize dynamic
linking for mobile programs. A scalable cross-module
optimization proposed by Ayers et al.[40] is also in this
category. Binary rewriting has been used to optimize
different applications including a wide range of ARM
applications by De Bus et al.[41] and the Linux kernel
by Chanet et al.[42] In addition to optimizations based
on information available from the source code, feedback
directed optimization has been developed to allow the
optimizer to use external information. Rus et al.[43] used
it to optimize string operations on large data centers.
There are also works to optimize the Java code of
Android. ProGuard[44] is a free Java class file shrinker,
optimizer, obfuscator, and preverifier. It detects and
removes unused classes, fields, methods, and attributes.
It optimizes bytecode and removes unused instructions.
In this paper, we use binary rewriting to optimize the
native code of Android except those in the Linux kernel.

VII. CONCLUSION AND FUTURE WORK

The extended call graph (ECG) presented in this paper
can model and analysis the multilingual complex system
Android as complex networks very well. We identified
that the ECG of Android system exhibits scale-free and
small-world feature.

System-wide dead code elimination optimization can
be performed based on these results. Most “isolated”
vertices and subgraphs are found not to be in the
significant subgraph and are eliminated to build a better
connected graph. The percentage of vertices in the largest
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connected subgraph is greatly increased. At the same
time, the average degree of vertex is raised by 27.0%.
It has also achieved about 26.7% code size reduction
and up to 1.3% speedup in floating-point computation.
Even the dedicated bionic libc still has 20.1% dead code
which are eliminated by our method.

This work not only provides a foundation of opti-
mizing Android operating system for both performance
and code size, but also helps us to understand and
develop the complex software system more efficiently.
Although Android-x86 3.2.2 is taken as the example to
demonstrate our method in this paper, we believe that
other versions of Android and other mobile operating
systems developed in C/C++ and assembly languages
can also be modeled, analyzed and optimized following
the same approach.

In the future we will continue to improve the con-
struction of extended call graph. We will use package
dependency relations and other information to further
reduce the number of false edges and entry points.

In addition, we plan to explore additional code and
data layout optimizations for Android that are both prac-
tical for deployment and strong enough for performance
improvement.

In the aspect of complex network, there are still
various features to explore. Further studies on how these
complex network features actually affect the perfor-
mance of software systems may enlighten us to develop
new optimization technology.
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