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Abstract. Bytecode (such as JAVA bytecode and .NET CIL) and virtual machine
are the key technologies for hardware- and operating system-indepesn Al-
though some efforts have been made to build logic system for bytecodeapns,
modular certification of bytecode still remains challenging. Moreovetifiesl
programs will still get stuck due to the virtual machine faults. To overctitase
challenges, this paper presents a logic system to verify bytecode preogvih
their running environment. We define a Hoare-style logic system whichgufty
ports abstract control stacks and unstructured control flows foutapdertifica-
tion of bytecode programs. We also implemented a certified stack-baseal v
machine with simulation relation proof. This logic system guarantees that a ce
tified bytecode program will run on the certified virtual machine without ggttin
stuck unless hardware faults occur. We prove the soundness amhsteate its
power by certifying some example programs with the Coq proof assisthist.
work not only provides a solid theoretical foundation for reasoningieibyte-
code programs, but also gains insight into building proof-presenongpders.

1 Introduction

Bytecode (such as JAVA bytecode [15] and .NET CIL [7]) and Wittal machine)
are the key components of the many current web applications.

Major ChallengesFormal reasoning about bytecode programs is required both f
trustworthy web applications and for proof-transformirggnpilers. Java and CIL are
already verifiably type safe with the well-defined type syst€learly, we want to cer-
tify more properties such as memory safty and partial ctmess. Although some ef-
forts [17, 3, 2] on building logic system for bytecode pragsahave been made, the task
still remains challenging because of the complexity of idzstcontrol stacks and the
lack of control flows information. Moreover, all these logigstems do focus on byte-
code programs; none of them takes virtual machines intoustctynfortunately, there
are lots of bugs in the well tested virtual machine [20]. Treve&n a certified program
may get stuck due to the virtual machine faults.

To tackle these challenges, this paper presents a way difgiitertified virtual ma-
chine and an end-to-end certification logic system for bydecprograms. We provide
a logic system for modularly verifying bytecode programsegdified virtual machine
for interpreting bytecode programs, and a guarantee thettdied bytecode program
will run fine on the certified virtual machine. It is very difilt to build a logic system
for certifying bytecode programs as well as a correspondertjfied virtual machine.
The major points are:

— How can we link certified bytecode programs and certified Vigether? An open
logic framework was designed to integrate [8] the proof dfedent logic systems



;Method: factorial -{(pg; gp)> ;entry point, instruction sequence 1

;with while loop 0 pushc 1 ;push imm 1 8 pushc 1 ;push imm 1

I
I
int factor(){ | 1 popr ;v =1 9 Dbinop_ ;n-1
r=1; | 2 goto 11 ;to the end 10 pop n ;save var n
while(n != 0){ | -{(p3, g3)} ;start loop -{(p11, g11)} ;inst seq 3
r = r*n; | 3 pushv r ;push var r 11 pushv n ;push var n
n = n-1; | 4 pushv n ;push var n 12 pushc O ;push imm O
} | 5 binop*  ;r*n 13 binop#  ;n#07
} | 6 popr ;save var r 14 brture 3 ;conditional goto
| 7 pushv n ;push var n 15 ret ;function ret

Fig. 1. Stack-Based Bytecode Program

for the X86 machine. But, it is very difficult to integrate tBeparated certified
program modules of different logic systems for differentcimaes.

— To certify bytecode programs modularly, program logic fog virtual machine is
required to support both runtime stacks and unstructuratt@dlows. We should
use similar logic systems for both the assembly program lam8ytecode program
to make it easy to link the proof together. But, is the ideaogfid system for as-
sembly code certification applicable to bytecode programafvirtual machine?

Our Approach A bytecode program with source code which involving whilego
control structure is shown in Figure 1. The contents in tredskv box can be ignored
now, which will be discussed in details later. Here we giverdormal overview about
how to certify this program in our method.

Firstly, we formalize two machines. We present the formdiniteon of bytecode
language which runs on a stack-based virtual machine nant?d @yteCode Ma-
chine). We use the formal definition of the X86 machine mexaiin SCAP paper [9].

Then, two logic systems for these two machines are providegetify bytecode
programs and the virtual machine implementation separared modularly. CertvVM
(Certified VM), an implementation of BCM on the X86 machinedstructed. We use
SCAP, a simple but flexible Hoare-style logic (see Fenhgl, [9]), to certify CertVM
modularly. Furthermore, we present a Hoare-style logic (C®#ifying Bytecode Pro-
grams) system for BCM. This logic follows the invariant-bdsproof technique. We
define a program invariant to encode the memory safety piyped the partial cor-
rectness which we are interested in.

Finally, the most important thing is to put these two logisteyns together to guar-
antee that certified bytecode programs run on the certifitgalimachines without get-
ting stuck. The simulation relation proof shows that CertWiblementation is satisfied
with BCM operational semantics. This main theorem provasftir each bytecode pro-
gram that is verified in the CBP logic, one can find an equiva¥&6 program which
is in a simulation relation with the execution of the byteeqatogram by the virtual
machine. This equivalent program is verifiable in SCAP.

Our ContributionsIn general, the most interesting point made by this papeutabo
the improvement over previous work is that of the certifiedual machine CertVM.
We present a Hoare-style logic system to support moduldicagion of bytecode pro-
grams with all kinds of stack-based control abstractiormswarstructured control flows.
Formalizing the memory model of our CertVM, we give a certifidrtual machine
with machine simulation relation proof. Building upon pieys work on verification,
we make the following contributions:



(World) W = (C,S,K¢,pc) (Memory H = {k~»w}"

(CodeHeap C := {f~1I}* (EStack K = nil |w:K
(Statg S = (H,K) (Labelg £,k := n (nat num$
(CStackK¢ = nil | £::K¢ (Word) w :=i (integerg
(ProgCnt pc == n (natnum$ (OprNum) m = {+.../,—---+}
(Instr) 1 = pushcw | pushvk | popk | binopm | unopm | brtrue £ | call £
(Commd c = 1] ret| goto £
(InstrSeq I ::= 1;I| ret| goto £

Fig. 2. Definition of BCM Bytecode Machine

— As far as we know, our work presents the first program logidifaevith certified
VM for certifying the partial correctness of bytecode pramis. Our work is static
certifying so there is no additional runtime overhead.

— With the “plus simulation” relation, we prove the semaniiceservation property
of our virtual machine. Furthermore, VM implementation amghulation relation
proof can be developed on any physical machines. As an iapiativantage, once
the properties of a bytecode program are certified, theyhelpreserved on any
certified virtual machine. That's the reason of “Certify entrust anywhere”.

— This logic system is, to our best knowledge, the first to extetRCC(Foundational
Proof-Carrying Code) concepts [1] which is useful for maeh¢ode certification
to mid-level bytecode language. As we know, an interpretairmilar to the code
generator of a compiler. So, it is a feasible way to build adaystem for proof
and semantics preserving compilation from bytecode to imaatode.

This system is fully mechanized. We give the complete soessliproof and a full
verification of an example in the Coq proof assistant [6]. Vineial machine CertVM
is implemented in X86 assembly language and is certified ®EAP logic system.
Furthermore, it is executable in the Bochs simulator [11].

The rest of this paper is organized as follows: we first formeathe bytecode vir-
tual machine BCM, give its operational semantics, and ptessé&loare-style logic sys-
tem CBP for bytecode program certifying(Sec 2). We then tieeimplementation of
CertVM, prove the simulation relation, and put them togetoeeprove the soundness
(Sec 3). After that, we show some examples and the implerti@mtaith Coq proof
assistant tools (Sec 4). Finally we discuss related worlsdaaw a conclusion.

2 CBP Logic for ByteCode Virtual Machine

In this section, we present the definition and the operatisaaantics of BCM byte-
code machine. Then, we give the program logic CBP for céntffoytecode programs.

2.1 Bytecode Machine BCM

BCM Definition.In Figure 2, we show BCM definition. The whole machine configu-
ration is called a “World” V), and consits of a read-only code he@&), (@n updatable
state §), a function call stackI{;), and a program countep¢). The code heap is a
finite partial mapping from code labelg)(to instruction sequencel)( The states con-
tains a memory heafHl) and an evaluation stackKj. The program countegsc points

to the current command i@. The instruction sequendds a sequence of sequential in-
structions ending with jump or return comman@st] extracts an instruction sequence
starting fromf in C, as defined in Figure 3. We use the dot notation to represesrha c
ponent in a tuplee.g.,S.K means the stack in stafe We also use functiomop() and



a [c¢ c¢=C(f) andc =goto £, orret s Jb ifx=a
Cle) = { ;T 1 =C(f) andl = C[£+1] (F{a~bh(x) = F(x) otherwise
validK n K top(K) + n<max(K) validK¢ nK¢ 2 top(K¢) + n < max(Kc)

A
validRa K¢ £ 3f, 3K Ke=f: K¢
Fig. 3. Definition of Representations
NextS(c pe k,) S S whereS = (H,K)

if c= ‘ if Enable(c) K¢S = ‘ thenS' = ‘
pushcw | validKOK (H,w:: K)
pushv £ | validK OK andH(f) =w (H,w::K)
pop £ K=w:K (H{f~w}, K
binop bop | K =wy:iwp iK', w=bop(wy,wp) | (H,w:K')
unop uop | K=wy:K',w=uop(wy) (H,w:K')
brtrue f | K=w:K',w= True or False (H,K/)
call £ validK¢ O K¢ (H,K)
ret validRa K¢ (H,K)
(H, K)
NextKc(c pes) Ke K’ whereS = (H,K)
’ if c= ‘ if Enable c) KcS= ‘ thenK¢ = ‘
callf | validK¢OKc (pc+1)::Ke)
ret validRa K¢ K
. ... K¢
NextPC(c g k,) pc pc’ whereS = (H, K)
if c= [ if Enablec) KcS= | thenpc’ = |
brirue f | K=wiK w=True | f
K=w:K,w=False | pc+1

call £ validK¢ 0 K¢ f

ret validRa K¢ f

goto £ £

pc+1l

c=C(pc) Enablec)KcS NextSicpck,)SS NextKecpes) KoK NextPCi gk, pepc
(C,S,K¢,pc) — (C,S', K¢/, pc)
Fig. 4. operational semantics &V M

(PO)

max() to get the current pointers and the upper boundg,dk.. Valid K or K. means
that current pointetop() is in domain[0,max()] and points to some value.

The BCM Operational Semantick Figure 4, we also define the machine con-
figuration transition operational semantics of each ims$ion in a formal way. Here
Enable(c) K¢ S gives the weakest condition for instructierto execute. The relation
NextS(c pc k) shows the transition of states by executingith program countepc
and call stack. While NextPC(¢ s k) Shows howpc changes aftet is executed with
S andKc. NextKc(c pe s) gives theK changes aftes execution with program counter
pc andS. The semantics of most instructions are straightforwahe. &xecution of pro-
grams is modeled as a small-step transition from one workhther.WW —— W’ is
made by executing the instruction pointed today

Specification Languagé/e use the mechanizedeta-logicwhich is implemented
in the Coq proof assistant [6] as our specification langu@be.logic corresponds to a
higher-order predicate logic with inductive definitions. §pecify a program with code
heapC, the programmer must insert specificatierat instruction sequence start points,
see Figure 1. As shown in Figure 5, the specificatias a pair(p,g). The assertiop



(Pred p € CsStack— State— Prop (Guarante¢ g € State— State— Prop
(Spe¢ s = (p,g) (MPred) m € Memory— Prop
(CdHpSpet W = {(f1,s1),...,(fn,sn)}

Fig. 5. Specification Constructs f@BP

is a predicate over function call staél and program stat8, while guaranteg is a
predicate over two program states. We gge specify the precondition over function
call stack, memory heap and stack. And gge specify the guaranteed behavior from
the specified program point to the point when tlerentfunction returns.

As we can see, thenable(c) defined in Figure 4 is a specigl And theNextS ¢ pc)
relation is a special form gf which is over the two adjacent states. We use the predicate
m to specify the memory heap. Specificatiéhfor code heaf associates code labels
£ with corresponding. Note that multiples may be associated with the safgust as
a function may have multiple specified interfaces.

2.2 The CBP Program Logic

We use the following judgments to define the inference rules:

WE {s}W (well-formed world)

WEC:¥ (well-formed code heap)

W {s}I (well-formed instruction sequence)
Inference rules of the program logic are shown in Figure 6.

Program Invariants.The wiLp rule formulates the program invariant enforced by

our program logic:
— The code heaff needs to be well-formed following trepHp rule.
— The imported interfac& is a subset of the exported interfag®, thereforeC is
self-contained and each imported specification has bedifiexbr
— Currentpc has a specification in W, thus the current instruction sequeri€c]
is well-formed with respect te.
— Given exportedV’, the current stat satisfies the assertian

Program Modulesln the corp rule, W contains specifications for external code
(imported by the local modul€), while W' contains specifications for code blocks in
the moduleC for other modules. Thus, ti@BP logic supportseparate verificatioof
program modules. Modules are modeled as small code heapk wdmtain at least one
code block. The specification of a module contains not onéc#jgations of the code
blocks in the current module, but also specifications ofrextiecode blocks which will
be called by this module. The well-formedness of each iddiai module is established
via thecpHprrule. Then, two non-intersecting well-formed modules dantbe linked
together via the.ink rule. TheworLp rule requires all modules to be linked into a
well-formed global code heap.

Sequential Instructiond.ike traditional Hoare-logic [10], our logic also uses the
pre- and post-condition as specifications for programs. Sewgerule is aschemafor
instruction sequences starting with an instructiofn cannot be conditional jump or
function call instructions). It says it is safe to execute istruction sequendestart-
ing at the code labglc, given the imported interface i and a preconditiorip, g).
An intermediate specificatiofp”,g”) with respect to which the remaining instruction
sequence is well-formed should be found. It is also used astagondition for the cur-
rent instruction. We useg, to represent the state transition made by the instruction
which is defined in Figure 7 and Figure 4. SinkextS does not depend on the current
program counter for these instructions fs used to represent arbitrape.



(Well-formed World)
WHEC:W WYWCW Wi{s}pc: Clpc] {s}W¥'S

(s} (C.5.p0) o)
WHC:W | (Well-formed Code H
for all ( ea)pelv’ WH{s}£: C[f]
Y CW (COHP)
LP]_F(C]_ILPS_ qu}—Czqulz Cl#Cz
(LINK)

Wqule—(C]_UCQILP&UW,Z

(Well-formed I nstr. Sequence)

& {brtrue call }  WH{(p",g")}pc+1:1 p=g (p>g)=p" (po(gog")) =g
Wi{(p.g)}pc: i1
(£, (6g) €W WH{Eg)lpotl: 1 (559
(P>epr) =P (Polgprog)) =g (P>ewr)=p" (Polgprog’)) =g
WH{(p,g)}pc: brtrue £/;I
(pe+1, (p",g")) €W LIJF{( ".g")pet+l: 1
(P> geat) =P (P> 8un) =P’ (PO (gunog”)) =g (., (F.g)eY gun = ((8a1°8) 0 &rer)

(BRTURE)

W{(p,g)}pc: call 1£;1

Pote) > & o
WH{(p,g)}pc: ret
(£, (p.g) €Y (P> 8yod) =P (PO(8gor0©8)) = 8 (GoTO)

W{(p.g)}pc: goto £’
Fig. 6. CBP Inference Rules

gor = AS,S NextS e, 1S (whereS.K = w:K',w= True)
gor = AS,S NextS(prye, ) S (whereS.K = w::K',w = False)
gc £ 2SS NextSc, ) SS (for all otherc)

Fig. 7. Local State and Program Point Transitions

The definitions in Figure 8 are used in these rules. The pagslic> g, specifies
the state resulting from the state transitggnknowing the initial state satisfigs The
composition of two subsequent transitiongndg’ is represented aso g/, andpog
refinesg with the extra knowledge that the initial state satisfieShe predicate = g,
means that the state transitigrwould not get stuck as long as the starting state satisfies
p. The second premise in thleEqQ rule means if the current state satisfiesfter state
transitiong,, the new state satisfigs. The last premise in theeq rule requires the
composition ofg, andg” fulfilling g, knowing the current state satisfigs

Function Call and Returrizigure 9(b) shows the meaning of the specificatip/z)
for the functionfoo defined in Figure 9(a). Note thgtmay cover multiple instruction
sequences. If a function has multiple return poigtgjoverns all the traces from the
current program point to any return point. Figure 9(c) iitates a function call tbar
(point B) from foo at pointA (labelpc = 5), with the return addregsc + 1 (pointD).
The specification obar is (pg, gg). Specifications at andD are(pa,ga) and(pp, gp)
respectively, wherg, governs the code segment andgp governsD-E.

p=g 2 VS.pS—39,gSY p>g 2 AS. 3So,pSoAg So S
gog 2 AS,8".38.gSSAgSS p=p £ VS.pS—p'S
g=g 2 vS,8.gS8 —gSY pog 2 AS,S.pSAgSS

Fig. 8. Connectors fop andg

6



//source code ;bytecode for BVM

//function bar " UPs 8g)t ;bar foo (p, 8)
void barO){ 0 pushc 1 ;push imm 1
int a=1; 1 pop a ja=1
¥ ~i(ec, &)} A (Pz: &3)
//funcion foo 2 ret ;bar return o e —
void foo(){ -ip, &)} ifoo +— P® (P4s 84) B
int b=1; 3 pushc 1 ;push imm 1
bar () ; 4popb ;b=1 g gz
b=1; -{(p4s 84)F (pD‘ gD)
} 5 cal 0 j;call bar g ret C
’ | (PO . .
~Upp. &o)} gSs D
6 pushc 2 ;push imm 2
7 pop b ;b =2 gp
-{(pe, g£)}
ret
8 ret ;foo return 4\ ________ \v) E
(@) (b)

(c)
Fig. 9. The Model for Function Call/Return in CBP

To ensure that the program behaves correctly, we must enfloecfollowing condi-
tions with a special guaranteg,, = AS,S”.35',35*,g.a SS' Agg S’ S* A g S*S”.

— the precondition obar should be satisfied.e.,VS,3S" .ppoSA gy SS — pg §;

— afterbar returns, callefoo resumes frond, vS,S”.po S — gun SS” — pp S

— if the functionbar and the code segmeDE satisfy their specifications, the spec-
ification for A-E is satisfiedj.e., vS,S",S".poS — gun SS” — gp §” §” — gS§”.

ThereT rule simply requires that the function has finished its gotrad transition
at this point. In this rule, we do not need to know any inforimratabout the return
address. So it can be used to modularly certify any calleetiimm separately.

Call Stack InvariantGeneralizing the safety requirement, we recursively defire
“well-formed function call stack” as follows:

WFST(g, K¢, S,W) 2 —35".gSS, whereK = nil.
WFST(g,Ke,S,W) 2 VS .gSS — p' S AWFST(g/, K¢/, S/, W),
where3f, IK Ke = £ 1 K¢/, (p',g") = W(£).

When the function call stack is empty, we are in the top fumctichich has no
return code pointdre., —=3S'. g S S'. Then the stack invariant at every step of program
execution is that, at each program point withg), the program staté must satisfyp
and there exists a well-formed control stackSirSo the stack invariant is:

{(p,g)} WS £ pSAWFST(g,Ke,S,W).

Soundness of CBRhe soundness of the program logic is proved following the
syntactic approach based on the progress and preservationds. It guarantees that
the complete system after linking never gets stuck as lotigeaigitial state satisfies the
program invariant defined by theLp rule. Furthermore, the invariant will be always
holding during execution, from which we can derive rich prdjes of programs.
Lemma 1l (Progress). If W {s}W, there exists a prograf’, such thatV —— W'.
Lemma 2 (Preservation). If W {s}W, andW —— W', then there exists’, W - {s"}W'.
Theorem 3 (CBP Soundness)-or all programV, specificatiorl and assertios. If
W {s}W, then for all natural number, there exists a prograii¥’ such thafWV——"W’.

3 Proof of ByteCode Virtual Machine

In this section, we present how to certify the implementatid a virtual machine
CertVM for BC/0. We first give the formal definition of x86 realode machine where
CertVM runs on. Then we introduce the program logic for thischine. Finally, we
show the design, implementation and formal proof of CertVM.



(World) W = (C,S,pc) (Labelg I,£,pc = n (nat num$
(CodeHeap C = {f~1}* (Flags) zf =D
(Statg S = (H,R,zf) (Bit)y b =0]|1
(Memory H := {l~w}* (Word) w =i (integerg
(RegFile R = {r_w}* (WordRe§ r = rax |rex | rcx | rpx
(Instr) 1 = jef | movw w,r | movw rs,ry | movw W(rs),rq | movw rs,W(rq) | addw w,r | subw w,r | cmpw w,r
(Commd c == 1| jmpf |jmpwr
(InstrSeq T == ;I |jmpf |jmpwr

Fig. 10. Definition of x86 Machine
NextSc pc S S’ whereS = (H, R, zf)
[ifc= [ thens” = |
(H,R{r~w},zf)
MOoVW rg, Ty (H,R{rg~R(rs)},zf)
movw rs,W(rq) | (H{l~R(rs)},R,z£), if | = R(rq) +wandl € dom(H)
movw W(rs),rq | (H,R{rg~R()},zf), if | = R(zrs) + wandl € domH)
(
(
(

movw w,r

addw w, T H,R{r~ (R(xr) +w)},zf)
subw w,r H,R{r~ (R(r) —w)},zf)
CMpW w,T H,R,b),b=0,if w=R(r); b=1else
(H,R,zf)
NextPC(c g) pc pc’ whereS = (H, R, zf)
[ifc= [ thenpc'= ‘
jef f if zf = 0; pc+ 1 others
jmp £ £
impwzr | fif £f=R(x)
pc+1

c=C(pc) NextSicpc)SS' NextPC(g) pcpc’

, (PC)
(C.S,pe) — (C,S',pc’)
Fig. 11.Operational semantics of x86 machine

3.1 x86 Machine and SCAP Program Logic

X86 machine is defined in Figure 10. And Figure 11 shows itgatmal semantics.
This is a simplified version which includes only four gengratpose registers. We use
SCAP [9] logic system to verify the CertVM implementatiorhel inference rules of
SCAP program logic are given in Figure 12. The soundnessf @fo®CAP is carried
out based on the progress and preservation lemmas whichvalar ¢o that of CBP.

3.2 The Design of CertVM

CertVM is implemented in real-mode x86 assembly language,iis executable in
the Bochs simulator. The current implementation of CertViimly includes the loader
and the interpreter. Other advanced features such as gacbligction and just in-time
compilation are not included yet.

The memory space of CertVM consists of four major parts: dw C), memory
heap H), evaluation stackl{) and function call stackl{c). All of them are located in
x86 machine’s memory heafil¢) as arrays. In the following analysis, functibase()
andmax() are used to get the base address and the maximum lenGtHHfK andK.
And top() denotes the top pointer of stakkandKc.

A loader is designed to launch the bytecode program. It |kgtiscode programs
into C, initializes the memory heafl and the evaluation stack§ (setting the stack
pointersp to zero). For the top level function, the bottom cell of fuontcall stackK,



(Well-formed World)

WEC:W WYWCW Wi{s}pc: Clpc] {s}W¥'S

WLD
VT {s} (C.5.pc) (weo)
WEC:W | (Well-formed Code Heap)
forall (f,s) eW': Wk{s}f: C[f]
CDHP,
YEC:W ( )
LP]_}—(C].ILP& LPZ}—(CziLPIZ C1#Co (LINK)
Wqule—(ClU(CZILP&UW,Z
WH{s}T| (Well-formed Instr. Sequence)
1¢{ie} WH{(F".g")}pc+1:1 p=g (p>g)=p" (po(g°g") =g (s£0
WH{(p,g)}pc: 1;1
(£, (p',8") €W WH{(®".g")}pctl:1
(P> ger) =P (Po(gerog)) =g (P>ger)=p" (po(gerog”)) =¢ 08
YH{(p.g)tpc: je ;I
(t,(@.g)e¥ (p>gm) =P (Polgmog)) =g (owP)
Wi{(p.g)}pc: jmp £’
(R(x), (P,-‘g/)) v (pr gjmpw) =7 (po (gjmpw og/)) =g (MPW)
WH{(p.g)}pc: jmpwr
Fig. 12. SCAP Inference Rules for x86 Machine
#Source code of CertVM | 12 addw %ax, %bx # 2 word long
~{(Ptetchr Sfetch) T #entry point | 13 movw (%bx), %ax #get entry point
1 fetch: #bytecode fetch | 14 jmpw *jax #jump to code entry
2  movw (pc), %ax  #bytecode pc I ~{(Pgotor Bgoto)} #instr. sequence 2
3  cmpw $0xFFFF,%ax #compare ra | 15 goto:
4 je fetch #loop forever | 16 movw (pc), %ax # code point
5 decode: | 17 movw $code, %bx # code base
6 movw $code, %bx #code base | 18 addw %ax, %bx # current base
7 addw %ax, %bx #current code | 19 movw 2(%bx),%cx # fetch i.a
8 movw (%bx), %ax #fetch i.f | 20 addw %cx, %ex  # 4 bytes instr.
9 dispatch: | 21 addw %cx, %hex  #
10 movw $table, %bx #dispatch table | 22 movw Jjcx, (pc) # target address

11  addw %ax, %bx #offset of code | 23 jmp fetch
Fig. 13.Fragment of CertVM Implementation

is set to -1 (OxFFFF) and the stack pointep points to the second cell. And CertVM’s
pc is set to the entry point of the loaded bytecode program rAsfiehe initializations,
it is ready to execute the bytecode program.

Every bytecode instruction is simulated by a sequence ofs86mbly instructions.
The simulation of a bytecode instruction consists of fouag#s: instruction fetching,
decoding, dispatching and interpreting. Figure 13 showsagsembly instruction se-
quence which simulate bytecode instructigsto as an example. The instruction se-
quence of bytecode fetching, decoding and dispatchingaseshby all BC/0 instruc-
tions. Thus the simulation of every bytecode start at thellabtch. After fetching
and decoding a bytecode, CertVM will jump to the unique epimint for each byte-
code. For bytecodgoto, the entry point is the label “goto” of line 15 in Figure 13.ér'h
entry points for all BC/0 instructions are stored in a byt#ednstruction dispatching
table. Data structure “table” of line 9 in Figure 13 is thepdiching table of CertVM.
It should be preserved during virtual machine execution.



Wx.Cx =Cyy Wx.pcy =fetch a(W, Wx.Hy)
W ~ Wy
Fig. 14. Simulation Relation
Hyx = Hxc WHyp W Hye W HXkC ] pr WHxo
Hxc(f x 4) =C(£), V£ € [O,max(C)] Hyp (I x 2) =H(l), VI € [0,max(H)]
Hyy (I x 2) = K(I), VI € [O,max(K)] Hypc(l X 2) =Kc(l), VI € [0,max(Kc)]
HXP(O) =pc ]HIXP(Z) = top(K) ]HIXP(4) = top(K¢)
o (W, Wy .Hy)
Fig. 15. The Memory Map Relation

3.3 Proof of the Correctness of CertVM

Simulation RelationTo execute bytecode programs correctly, the x86 simulgiion
gram should maintain an invariant for the interpretatiorwery bytecode instruction.
This invariant, called "simulation relation”, is definedaaelation between the bytecode
machine worldW¥ = (C, (H, K), K¢, pc) and x86 machine worliVx = (Cx, (Hx, R, zf),pcy).
This relation should be maintained when the simulation @gexecutes to the fetch-
ing phase. This relation is shown in in Figure 14, which iatks:

— the code heap of x86 world should be the code of CertVM,

— current program counter of x86 world pointsftetch,

— the bytecode machine worl@x is mapped to x86 machine memory heHp,

following the memory relatiomw,

— there is no constrain for register file and flag.

We define certified virtual machindFVM (W, W) for all bytecode prograriV
and X86 progranWx as a virtual machine with this simulation relation:

Definition 4 (Well-Formed VM). For all bytecode prograriiV, W' and x86 program
Wy, if W~ Wx andW —— W, there exists a x86 prograiy’x such thafW’ ~ W'y
andWX'—>+Wlx.

We use “Plus” simulation relation to describe the bytecaderpretation of VM. This
relation shows that CertVM implementation is satisfied vBBM operational seman-
tics. Once we carry out the simulation relation proof, weageertified virtual machine.

The Memory RelatiomAs mentioned before, the code heap, memory heap, evalu-
ation stack and function call stack of bytecode machine lhistaed as arrays in x86
machine memory heap. These arrays are denot&aslyy, , Hyj andHyy . respec-
tively. In addition,Hxp denotes the memory chunk that stores the valugcoép and
csp, andHxo denotes the free memory space.

The exact configuration of this memory heap patrtition is @efias follows:

Hyc = Hx[base(Hxc),(base(Hxc) +max(C) x 4)]
Hy, =2 Hglbase(Hyy),(base(Hyy) + max(H) x 2)]
Hy, = Hx[base(Hyy),(base(Hyy) + max(K) x 2)]
Hyxe = Hx[base(Hyyc), (base(Hyyc) +max(Ke) x 2)]
Hxp £ Hx[base(Hxp),(base(Hyyc) + 6)]
Note that every bytecode instruction is 4 bytes long, ant@ccupiesnax(C) x 4 cells
in Hx. And every item ofK andKK is only 2 bytes long. Therefore, the map relation
between x86 machine memory heap and bytecode world is defirfédure 15.

Proof by SimulationFrom CertVM implementation, we know that the entry point
of every bytecode is labélktch. To prove its correctness, we only have to show "sim-
ulation relation” is achieved when CertVM jumps tetch, and the bytecode world
defined in this relation has its successive state. Thus, ei¢hasspecification language
of SCAP to describe this simulation relation.

—~
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Ppre = (validK 2K) A (validKc 0Kc) A (validRa  K)

Po = Ppre/N (T~ )* (3 >=0, n1i)), go = po— (H'(r) =H(n)!)

Pz = Ppre/ ((H(r) >=1)A(H(n) >=0)), gz = p3— (H'(r) = H(r) * H(n)!)
P11 = P3, g11= g3

Fig. 16. Specifications: While Loop Example

Suppose the specification®dtch is (pc,gc):

Pc = ASx,IW.a(W,Sx.Hx) AEnabléc,S, Kc) whereW = (C,S, K, pc) Ac= C(pc)
gc = AS, AW, W.W — W Ao (W, Sx.Hx) A o(W S . Hy)

pc means that before executifgtch, the x86 machine world should maintain
the simulation relation with a bytecode world that can titatusits next step. Andg.
ensures that after interpreting a bytecode instructiansiimulation relation is still held.
Thus, we only need to use the inference rules of SCAP to piate t

Wxc H{[(pcs gc) ]} fetch: Cyylfetch].

whereWxc = {(fetch,[(pc,8c)]), (£,[(pc,8c)])}, £ is the entry point in dispatch
table for bytecode:. By the well-formedness of code heap modQigy[fetch], we
can conclude that the CertVM is a well-formed virtual maehin

Theorem 5 (Soundness Theorem)For all bytecode programyy and x86 program
Wy, if WH{s}W and WFVM(W,Wyx), there exists specificatioWx and assertion
sx such thatWx + {sx } Wx.

Well-formed bytecode program guarantees that every icistmican be executed, while
the CBP inference rules guarantee that the propertiesiifeedtl in the new program
state. WithWFVM, we know that for every bytecode execution step, there isla we
formed x86 code heap. The SCAP logic guarantees that alifarelied x86 code heaps
be linked into one single well-formed global one.

4 Example and Implementation

A factorial function implemented with while loop and noreéd variables and its caller
are shown in this section to demonstrate the particulaufeatof our logic, and to show
how to write specification and how to prove bytecode prograitis CBP. Actually, the
only work a programmer needs to do is to prove bytecode pnoginaith CBP. Then
this logic system guarantees that a well-formed bytecodgram will runs on CertVM
without getting stuck provided the x86 machine works.

4.1 Modular Certification: Factorial Function

Get Instruction SequenceBactorial function source code and the bytecode program
with its specifications for BCM are shown in Figure 1 (Sectibn Finding the instruc-
tion sequence is the first step to certify a program. From #fimition in Figure 2, we
know that an instruction sequence is a set of instructiomsngnwith unconditional
jump jmp or function returnret. Thus, it can be seen that there are three instruction
sequences in while loop program. The instructions withlBBe 2 form the first in-
struction block. And the second one is the instructions Veitiel from 3 to 10. And the
last one is the block of remain instructions.
Write Specification for Instruction Sequenc@$en the programmer needs to give
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//function caller -{(p1s: 816)} ;spec for caller

|
void caller(){ | 16 pushc 3 ;push imm 3
int n=3; | 17 pop n ;n = 3
call factor; | 18 call 0 ;call factor()
} | ~{(p19, 19)} ;spec for return point
| 19 ret ;caller return
Ppre = (validK 2K) A (validKc 1Kc)A(validRa Kq)
P16 2 Py (1) (N~ ), £16 2 P1o— (H'(r) = 3))
P19 £ Py (1 =3 xn—0)), £10 2 P1o— (H/(r) = 3))
29 29
Po = 4% g = ¢

Fig. 17.Caller of Factorial Function

code heap specificatidH, which is a finite mapping from code labeigo code spec-
ificationss which is a pair(p,g). CBP specifications for code heap are embedded in
the code, enclosed by{} in shadow box. Specifications of this example are given in
Figure 16. To simplify our presentation, we write the pratig in the form of a propo-
sition with free variables referring to components of tregess.

Following the inference rules, the code specifications khbe given for these
points: the head of a instruction sequence, the targetdatfelunction call instruc-
tion call and jump instructions (includingoto andbrture), and the function call return
address which is just after call instructioall.

The specification of the this procedure is givengg gy). Frompy, we know that
the values of variablesandn stored in memory heap are inside the proper scope. The
guarantegy, specifies the behavior of the function: the non-local vdeisbandn fulfill
(H'(r) = H(n)!).

(p3,g3) is the assertion for while loop body. The pre-conditignmeans that the
values of variables andn are still inside the proper scope. The guarapigsays that
the result which is stored in memory heap must fulfill the Idi@point. The specifica-
tion (p;1,811) at the begin point of this while loop is equal (s, g3).

Certify and Link Them TogetheFo check the well-formedness of an instruction
sequence beginning with a programmer should apply the appropriate inference rules
and find intermediate assertions sucliigisg’), which serves both as the post-condition
for 1 and as the pre-condition for the remaining instruction seqga.

After that, a programmer is also required to establish thik-fwemedness of each
individual module via thepHp rule. Two non-intersecting well-formed code heaps can
then be linked together via thenk rule. ThewLp rule requires that all code heaps be
linked into one single well-formed global one.

Support Modular CertificationAll the code specificationd used in CBP rules are
thelocal specifications for the current module. Thus, CBP supporulao reasoning
about function call/return in the sense that caller anceeatbin be in different modules
and be certified separately. When specifying the callee pgroeg we do not need any
knowledge about the return address in its pre-conditior.RET rule for the instruction
“ret” does not have any constraints on the return address.

4.2 Modular Certification: Caller of Factorial Function

Source code and bytecode program with specification of therdar the while loop
factorial example are shown in Figure 17.

This function just initializes the variablesand then calls functiofactor. The spec-
ification at the entry point iépg,816). The pre-conditiop,¢ Simply says that the mem-

12



| Component Name | Number of lines|

Basic Utility Definitions & Lemmas 2,367
BCM Machine & Operational Semantics 3,285
CBP Rules & Soundness 1,032
X86 Machine & SCAP logic 2,710
CertVM Memory Layout & Proof 15,429
Bytecode Examples Source Code Spec. & Proof 1,469
| Total \ 26,292|

Fig. 18.The Verified Package in Coq

ory cells for variables andr are there for this function to run. The guarangggspec-
ifies the behavior of the caller procedure: the resiritmemory heap is the factorial of
3. The specification of the return point(ig,9,g19). P19 Means that the memory cells
for variablesn andr are still there. The guarantggy is just the same ag¢.

FromcaL inference rule, we know that the specification of the cadlesitry point
should be added. The specificatiq®, gg) in Figure 16 can be used. Furthermore, the
specification of function entry point defines its interfaie&aller can invoke any callees
which share the same interface.

4.3 Implementation with Coq

Our logic system presented in this paper has been appliedd¢odue programs for our
verified stack-based virtual machine. We have formalize®/Bi®s operational seman-
tics, and the program logic CBP. We have also formalized a x@&86hine, its opera-
tional semantics, and the SCAP program logic for it in the @oapf assistant. With
SCAP logic, we proved the simulation relations of our vitterachine CertVM.

The syntax of our machine (both the bytecode machine and »&thime), is en-
coded in Coq using inductive definitions. Operational setfnaf the machine and all
the inference rules of program logic are defined as inducéilations. The soundness of
the framework itself is formalized and certified in Coq feliag the syntactic approach.

These examples are usually implemented directly in byteeod are hard to certify
using the existing approaches. Manually optimized byteamdcode generated by op-
timizing compilers can also be certified using our systerhg. groof is also formalized
and implemented in Coq and is machine-checkable.

The Coq implementation has taken several months per pessbof which a sig-
nificant amount of efforts have been put on the implementatiobasic facilities, in-
cluding lemmas and tactics for partial mappings and Sejparhbgic assertions. These
common facilities are independent of the task of certifyégmgmples. The implementa-
tion of CBP logic system includes around 3200 lines of Cogpdirgy of BCM and its
operational semantics, 1000 lines encoding of CBP rulegtedoundness proof. We
have written more than 15 thousand lines of Coq tactics tifg€ertVM with SCAP
logic. We also have written about 1500 lines of Coq tactiasettify practical bytecode
examples, including the while-loop and function call/retu

It is found in our experience that human smartness stillpky important role to
come up with proper program specifications, and the diffjodétpends on the property
one is interested in and the subtlety of the algorithmsfit&Wen proper specifications,
proof construction of bytecode is mostly routine work. Sgremises of inference rules
can be automatically derived after defining lemmas for commstructions.
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Compared the experiences in CBP with that in SCAP, we fouatttie code size
ratios of bytecode programs to proofs and assembly codeowfpiooks almost the
same. While bytecode is a fairly compact format compared tograode. Most JVM
instructions use only 1 or 2 bytes. Moreover, they are sdiphigd instructions that can-
not be translated into a single native processor instmeét#oa rule. In fact, our CertVM
expand code size by the factor of 15, while most Java conspégpand code size by a
factor of 5 to 10 [23]. With our logic, we only write proof foykecode programs rather
than write proof for the corresponding assembly code dire8b the workload will be
greatly reduced by a factor of 5 to 10. That will be a signifidamprovement for fully
certified subroutines with machine checkable proofs.

Extensions and Future Worhe support of object-oriented features such as ob-
jects, references, methods, and inheritance are impatahtiseful. Extension of the
program logic to support exception handling is straightfand and interesting work.
Following the similar idea of function call/return, reagam about exceptions is not
much different from reasoning about functions. Our logistsyn does not support con-
currency yet. There are a number of subtle problems evereinvtil-used bytecode
programs such as JDK synchronized classes [19]. It is dgtamleasy work to extend
the machine to support concurrency. But it is difficult to defa simple logic system to
modularly certify concurrent bytecode programs. We wilitrin the near future.

On the certified virtual machine, there are also some iniegegxtensions. Veri-
fication of the useful features such as memory managemetinitime compilation,
garbage collectors will lead to some exciting challenges.

5 Related Works and Conclusion

Logic for Bytecode and Virtual MachinQuigley [17] has demonstrated that it is possi-
ble to define a Hoare-style logic for bytecode programs tegtbe program containing
loops. A program logic [2] which combines Hoare triples fagthods with instruction
specifications is presented for a JAVA-like bytecode lamgguay Bannwart and Mler.
Their logic supports lots of object-oriented features saslobjects, references, meth-
ods, and inheritance. Benton [3] proposed a typed, compoaltlogic for a stack-based
abstract machine to verify bytecode programs which argewrin an imperative subset
of .NET CIL.

But, all these work only considered logic system for bytexpdograms. None of
them took the virtual machine into account. Linking cerdfleytecode programs with
certified VM is very difficult. An open logic framework was dgsed to integrate [8]
the proof of different logic systems for the X86 machine omtythis paper, we inte-
grate the separated proof modules of different logic systBmdifferent machine by
simulation relation proof. To our best knowledge, our lagyistem is the first facility to
link certified virtual machine with modularly certified bgtde programs.

Reasoning about Control Stacl®easoning about control stacks is extremely diffi-
cult for low-level code programs. STAL and its variationg]2an only treat return code
pointers as first-class code pointers and stacks as “clgstisn and Appel [21] use the
implicit finite unions structure to study the low-level larape. As a result, they arrived
at continuation-style Hoare logic explainable by indexemded, with a rather convo-
luted interpretation of Hoare triples involving explicixfioint approximations. Saabas
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and Uustalu [18] introduced a compositional natural serfoamtnd Hoare logic based
on the implicit finite unions structure for a simple low-lélenguage with expressions.
Ni and Shao’s work [16] combines the syntactic approach usegpe systems with
logic systems to support code pointer specification. Failgwhe producer/consumer
model, Fengetc. [9] proposed SCAP to modularly certify assembly code wittkt
based control abstractions. Benton's typed, compositioga for bytecode programs
uses a higher-level abstract machine with separate dataata control stack.

We build a Hoare-style logic system to certify bytecode paogs which run on
verified virtual machine. As the examples shown, prograrh witmplex control stack
operations be certified within our logic. Our BCM is a higherel machine with a
dedicated function call stack. It looks like Benton’s aastrmachine. While our logic
system CBP is established following SCAP’s producer/corestack model. This idea
brings much convenience to the integration of SCAP and CBBfpr

Certified Compiler and Interpretekarge efforts have been made on building reli-
able compiler and interpreter with formal methods. Leaguicebuilt a type preserving
JAVA compiler [12] and Chemetc.developed a type preserving optimizing compiler for
MSIL [4]. Chlipala presented a certified compiler from thenply-typed lambda cal-
culus to assembly language [5]. CO compiler [13], a comffilem C subset language
CO to the DLX machine language, is formal specified and pravésabelle/HOL. The
realistic and verified Compcert compiler [14], is developed verified in Coq.

But all these work only focus on semantics preserving witlegll-formed proper-
ties of source programs. With the formalization and theifogation of the simulation
relation, our work gives a logic system to link the verifieddnode programs with the
verified execution environment. It guarantees that a cedtliiytecode program runs on
certified virtual machine will never get stuck as long as heue: works. It's an end-to-
end solution and can be considered as a proof and semarggerping compiler.

ConclusionThis paper presents a logic system to verify bytecode progjias well
as a corresponding certified stack-based virtual machihis. faper defines a Hoare-
style logic system for modularly specifying bytecode peorgs with complex stack-
based control abstractions and unstructured control fldws.execution of bytecode
programs is formalized via a design of an appropriate Vinoachine, which is im-
plemented in X86 assembly. The implementation of the Vimo@achine is verified in
a previously published SCAP logic. We proved that for eadiedyde program that is
verified in the CBP logic, an equivalent X86 program whichnigisimulation relation
can be found. This equivalent program is well-formed in SA@dc.

This approach might be powerful and simple enough to becosable in prac-
tice. To certify a bytecode program, a programmer’s tasknly cequired to find the
specification and establish the well-formedness of indiglcbytecode module. This
logic system guarantees that a certified bytecode progréimuwion the certified VM
without getting stuck unless hardware faults occur. By oyeeiment, proving in CBP
instead of directly in SCAP is expected to reduce the worklmaa factor of 5-10.

Our work provides a logic system for reasoning about bytegdgrams for stack-
based virtual machine and makes an advance toward buildimga-transforming
compilation environment. We believe this work may serve aslal theoretical foun-
dation to understand and reason about the popular and compleapplications.
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