
Certify Once, Trust Anywhere
Modular Certification of Bytecode Programs for Certified Virt ual Machine

Yuan Dong, Kai Ren, Shengyuan Wang, and Suqin Zhang

Tsinghua University, Beijing, China

Abstract. Bytecode (such as JAVA bytecode and .NET CIL) and virtual machine
are the key technologies for hardware- and operating system-independence. Al-
though some efforts have been made to build logic system for bytecode programs,
modular certification of bytecode still remains challenging. Moreover, certified
programs will still get stuck due to the virtual machine faults. To overcomethese
challenges, this paper presents a logic system to verify bytecode programs with
their running environment. We define a Hoare-style logic system which fullysup-
ports abstract control stacks and unstructured control flows for modular certifica-
tion of bytecode programs. We also implemented a certified stack-based virtual
machine with simulation relation proof. This logic system guarantees that a cer-
tified bytecode program will run on the certified virtual machine without getting
stuck unless hardware faults occur. We prove the soundness and demonstrate its
power by certifying some example programs with the Coq proof assistant.This
work not only provides a solid theoretical foundation for reasoning about byte-
code programs, but also gains insight into building proof-preserving compilers.

1 Introduction
Bytecode (such as JAVA bytecode [15] and .NET CIL [7]) and VM (virtual machine)
are the key components of the many current web applications.

Major Challenges.Formal reasoning about bytecode programs is required both for
trustworthy web applications and for proof-transforming compilers. Java and CIL are
already verifiably type safe with the well-defined type system. Clearly, we want to cer-
tify more properties such as memory safty and partial correctness. Although some ef-
forts [17, 3, 2] on building logic system for bytecode programs have been made, the task
still remains challenging because of the complexity of abstract control stacks and the
lack of control flows information. Moreover, all these logicsystems do focus on byte-
code programs; none of them takes virtual machines into account. Unfortunately, there
are lots of bugs in the well tested virtual machine [20]. Thus, even a certified program
may get stuck due to the virtual machine faults.

To tackle these challenges, this paper presents a way of building certified virtual ma-
chine and an end-to-end certification logic system for bytecode programs. We provide
a logic system for modularly verifying bytecode programs, acertified virtual machine
for interpreting bytecode programs, and a guarantee that a certified bytecode program
will run fine on the certified virtual machine. It is very difficult to build a logic system
for certifying bytecode programs as well as a correspondingcertified virtual machine.
The major points are:

– How can we link certified bytecode programs and certified VM together? An open
logic framework was designed to integrate [8] the proof of different logic systems

;Method: factorial | -{(p0, g0)} ;entry point, instruction sequence 1

;with while loop | 0 pushc 1 ;push imm 1 8 pushc 1 ;push imm 1

int factor(){ | 1 pop r ;r = 1 9 binop_ ;n-1

r = 1; | 2 goto 11 ;to the end 10 pop n ;save var n

while(n != 0){ | -{(p3, g3)} ;start loop -{(p11, g11)} ;inst seq 3

r = r*n; | 3 pushv r ;push var r 11 pushv n ;push var n

n = n-1; | 4 pushv n ;push var n 12 pushc 0 ;push imm 0

} | 5 binop* ;r*n 13 binop# ;n#0?

} | 6 pop r ;save var r 14 brture 3 ;conditional goto

| 7 pushv n ;push var n 15 ret ;function ret

Fig. 1.Stack-Based Bytecode Program

for the X86 machine. But, it is very difficult to integrate theseparated certified
program modules of different logic systems for different machines.

– To certify bytecode programs modularly, program logic for the virtual machine is
required to support both runtime stacks and unstructured control flows. We should
use similar logic systems for both the assembly program and the bytecode program
to make it easy to link the proof together. But, is the idea of logic system for as-
sembly code certification applicable to bytecode programs for a virtual machine?

Our Approach.A bytecode program with source code which involving while loop
control structure is shown in Figure 1. The contents in the shadow box can be ignored
now, which will be discussed in details later. Here we give aninformal overview about
how to certify this program in our method.

Firstly, we formalize two machines. We present the formal definition of bytecode
language which runs on a stack-based virtual machine named BCM (ByteCode Ma-
chine). We use the formal definition of the X86 machine mentioned in SCAP paper [9].

Then, two logic systems for these two machines are provided to verify bytecode
programs and the virtual machine implementation separately and modularly. CertVM
(Certified VM), an implementation of BCM on the X86 machine isconstructed. We use
SCAP, a simple but flexible Hoare-style logic (see Fenget al., [9]), to certify CertVM
modularly. Furthermore, we present a Hoare-style logic CBP(Certifying Bytecode Pro-
grams) system for BCM. This logic follows the invariant-based proof technique. We
define a program invariant to encode the memory safety property and the partial cor-
rectness which we are interested in.

Finally, the most important thing is to put these two logic systems together to guar-
antee that certified bytecode programs run on the certified virtual machines without get-
ting stuck. The simulation relation proof shows that CertVMimplementation is satisfied
with BCM operational semantics. This main theorem proves that for each bytecode pro-
gram that is verified in the CBP logic, one can find an equivalent X86 program which
is in a simulation relation with the execution of the bytecode program by the virtual
machine. This equivalent program is verifiable in SCAP.

Our Contributions.In general, the most interesting point made by this paper about
the improvement over previous work is that of the certified virtual machine CertVM.
We present a Hoare-style logic system to support modular verification of bytecode pro-
grams with all kinds of stack-based control abstractions and unstructured control flows.
Formalizing the memory model of our CertVM, we give a certified virtual machine
with machine simulation relation proof. Building upon previous work on verification,
we make the following contributions:

2

(World) W ::= (C,S,Kc,pc)
(CodeHeap) C ::= {f ; I}∗

(State) S ::= (H,K)
(CStackKc ::= nil | f ::Kc

(ProgCnt pc ::= n (nat nums)

(Memory H ::= {k ; w}∗

(EStack K ::= nil | w ::K
(Labels) f,k ::= n (nat nums)
(Word) w ::= i (integers)

(OprNum) m ::= {+ . . ./,−·· ·+}
(Instr) ι ::= pushc w | pushv k | pop k | binop m | unop m | brtrue f | call f

(Commd) c ::= ι | ret | goto f

(InstrSeq) I ::= ι;I | ret | goto f

Fig. 2.Definition of BCM Bytecode Machine

– As far as we know, our work presents the first program logic facility with certified
VM for certifying the partial correctness of bytecode programs. Our work is static
certifying so there is no additional runtime overhead.

– With the “plus simulation” relation, we prove the semanticspreservation property
of our virtual machine. Furthermore, VM implementation andsimulation relation
proof can be developed on any physical machines. As an important advantage, once
the properties of a bytecode program are certified, they willbe preserved on any
certified virtual machine. That’s the reason of “Certify once, trust anywhere”.

– This logic system is, to our best knowledge, the first to extend FPCC(Foundational
Proof-Carrying Code) concepts [1] which is useful for machine code certification
to mid-level bytecode language. As we know, an interpreter is similar to the code
generator of a compiler. So, it is a feasible way to build a logic system for proof
and semantics preserving compilation from bytecode to machine code.

This system is fully mechanized. We give the complete soundness proof and a full
verification of an example in the Coq proof assistant [6]. Thevirtual machine CertVM
is implemented in X86 assembly language and is certified withSCAP logic system.
Furthermore, it is executable in the Bochs simulator [11].

The rest of this paper is organized as follows: we first formalize the bytecode vir-
tual machine BCM, give its operational semantics, and present a Hoare-style logic sys-
tem CBP for bytecode program certifying(Sec 2). We then givethe implementation of
CertVM, prove the simulation relation, and put them together to prove the soundness
(Sec 3). After that, we show some examples and the implementation with Coq proof
assistant tools (Sec 4). Finally we discuss related works and draw a conclusion.

2 CBP Logic for ByteCode Virtual Machine
In this section, we present the definition and the operational semantics of BCM byte-
code machine. Then, we give the program logic CBP for certifying bytecode programs.

2.1 Bytecode Machine BCM

BCM Definition.In Figure 2, we show BCM definition. The whole machine configu-
ration is called a “World” (W), and consits of a read-only code heap (C), an updatable
state (S), a function call stack (Kc), and a program counter (pc). The code heap is a
finite partial mapping from code labels (f) to instruction sequences (I). The stateS con-
tains a memory heap (H) and an evaluation stack (K). The program counterpc points
to the current command inC. The instruction sequenceI is a sequence of sequential in-
structions ending with jump or return commands.C[f] extracts an instruction sequence
starting fromf in C, as defined in Figure 3. We use the dot notation to represent a com-
ponent in a tuple,e.g.,S.K means the stack in stateS. We also use functiontop() and

3

C[f] ,

{

c c = C(f) andc = goto f′, or ret
ι;I ι = C(f) andI = C[f+1]

(F{a ; b})(x) ,

{

b if x = a
F(x) otherwise.

validK n K , top(K) + n≤ max(K) validKc n Kc , top(Kc) + n≤ max(Kc)

validRa Kc , ∃f,∃Kc
′.Kc = f ::Kc

′

Fig. 3.Definition of Representations
NextS(c,pc,Kc) S S

′ whereS = (H,K)

if c = if Enable(c) Kc S = thenS
′ =

pushc w validK 0 K (H,w ::K)

pushv f validK 0 K andH(f) = w (H,w ::K)

pop f K = w ::K′ (H{f;w},K′)

binop bop K = w1 ::w2 ::K′,w = bop(w1,w2) (H,w ::K′)

unop uop K = w1 ::K′,w = uop(w1) (H,w ::K′)

brtrue f K = w ::K′,w = True or False (H,K′)

call f validKc 0 Kc (H,K)

ret validRa Kc (H,K)

. . . (H,K)

NextKc(c,pc,S) Kc Kc
′ whereS = (H,K)

if c = if Enable(c) Kc S = thenKc
′ =

call f validKc 0 Kc (pc+1) ::Kc)

ret validRa Kc Kc
′

. Kc

NextPC(c,S,Kc) pc pc
′ whereS = (H,K)

if c = if Enable(c) Kc S = thenpc′ =

brtrue f K = w ::K′,w = True f

K = w ::K′,w = False pc+1
call f validKc 0 Kc f

ret validRa Kc f

goto f f

. pc+1
c = C(pc) Enable(c) Kc S NextS(c,pc,Kc) S S

′ NextKc(c,pc,S) Kc Kc
′ NextPC(c,S,Kc) pc pc

′

(C,S,Kc,pc) 7−→ (C,S′,Kc
′,pc′)

(PC)

Fig. 4.operational semantics ofBVM

max() to get the current pointers and the upper bounds ofK, Kc. Valid K or Kc means
that current pointertop() is in domain[0,max()] and points to some value.

The BCM Operational Semantics.In Figure 4, we also define the machine con-
figuration transition operational semantics of each instruction in a formal way. Here
Enable(c) Kc S gives the weakest condition for instructionc to execute. The relation
NextS(c,pc,Kc) shows the transition of states by executingc with program counterpc
and call stackKc. WhileNextPC(c,S,Kc) shows howpc changes afterc is executed with
S andKc. NextKc(c,pc,S) gives theKc changes afterc execution with program counter
pc andS. The semantics of most instructions are straightforward. The execution of pro-
grams is modeled as a small-step transition from one world toanother.W 7−→ W

′ is
made by executing the instruction pointed to bypc.

Specification LanguageWe use the mechanizedmeta-logicwhich is implemented
in the Coq proof assistant [6] as our specification language.The logic corresponds to a
higher-order predicate logic with inductive definitions. To specify a program with code
heapC, the programmer must insert specificationss at instruction sequence start points,
see Figure 1. As shown in Figure 5, the specifications is a pair(p,g). The assertionp

4

(Pred) p ∈ CStack→ State→ Prop (Guarantee) g ∈ State→ State→ Prop
(Spec) s ::= (p,g) (MPred) m ∈ Memory→ Prop

(CdHpSpec) Ψ ::= {(f1,s1), . . . ,(fn,sn)}

Fig. 5.Specification Constructs forCBP

is a predicate over function call stackKc and program stateS, while guaranteeg is a
predicate over two program states. We usep to specify the precondition over function
call stack, memory heap and stack. And useg to specify the guaranteed behavior from
the specified program point to the point when thecurrent function returns.

As we can see, theEnable(c) defined in Figure 4 is a specialp. And theNextS(c,pc)

relation is a special form ofg which is over the two adjacent states. We use the predicate
m to specify the memory heap. SpecificationΨ for code heapC associates code labels
f with correspondings. Note that multiples may be associated with the samef, just as
a function may have multiple specified interfaces.

2.2 The CBP Program Logic
We use the following judgments to define the inference rules:

Ψ ⊢ {s}W (well-formed world)
Ψ ⊢ C :Ψ′ (well-formed code heap)
Ψ ⊢ {s}I (well-formed instruction sequence)

Inference rules of the program logic are shown in Figure 6.
Program Invariants.The WLD rule formulates the program invariant enforced by

our program logic:
– The code heapC needs to be well-formed following theCDHP rule.
– The imported interfaceΨ is a subset of the exported interfaceΨ′, thereforeC is

self-contained and each imported specification has been certified.
– Currentpc has a specifications in Ψ, thus the current instruction sequenceC[pc]

is well-formed with respect tos.
– Given exportedΨ′, the current stateS satisfies the assertions.

Program Modules.In the CDHP rule, Ψ contains specifications for external code
(imported by the local moduleC), while Ψ′ contains specifications for code blocks in
the moduleC for other modules. Thus, theCBP logic supportsseparate verificationof
program modules. Modules are modeled as small code heaps which contain at least one
code block. The specification of a module contains not only specifications of the code
blocks in the current module, but also specifications of external code blocks which will
be called by this module. The well-formedness of each individual module is established
via theCDHP rule. Then, two non-intersecting well-formed modules can then be linked
together via theLINK rule. TheWORLD rule requires all modules to be linked into a
well-formed global code heap.

Sequential Instructions.Like traditional Hoare-logic [10], our logic also uses the
pre- and post-condition as specifications for programs. TheSEQ rule is aschemafor
instruction sequences starting with an instructionι (ι cannot be conditional jump or
function call instructions). It says it is safe to execute the instruction sequenceI start-
ing at the code labelpc, given the imported interface inΨ and a precondition(p,g).
An intermediate specification(p′′,g′′) with respect to which the remaining instruction
sequence is well-formed should be found. It is also used as a post-condition for the cur-
rent instructionι. We usegι to represent the state transition made by the instructionι,
which is defined in Figure 7 and Figure 4. SinceNextS does not depend on the current
program counter for these instructions “” is used to represent arbitrarypc.

5

Ψ ⊢{s}W (Well-formed World)
Ψ ⊢ C :Ψ′ Ψ ⊆ Ψ′ Ψ ⊢{s}pc : C[pc] {s} Ψ′

S

Ψ ⊢{s}(C,S,pc)
(WLD)

Ψ ⊢ C :Ψ′ (Well-formed Code Heap)
for all (f,s) ∈ Ψ′ : Ψ ⊢{s}f : C[f]

Ψ ⊢ C :Ψ′
(CDHP)

Ψ1 ⊢ C1 :Ψ′
1 Ψ2 ⊢ C2 :Ψ′

2 C1#C2

Ψ1∪Ψ2 ⊢ C1∪C2 :Ψ′
1∪Ψ′

2
(LINK)

Ψ ⊢{s}I (Well-formed Instr. Sequence)

ι 6∈ {brtrue ,call } Ψ ⊢{(p′′,g′′)}pc+1 : I p ⇒ gι (p ⊲ gι) ⇒ p′′ (p◦ (gι ◦g
′′)) ⇒ g

Ψ ⊢{(p,g)}pc : ι; I

(SEQ)
(f′, (p′,g′)) ∈ Ψ Ψ ⊢{(p′′,g′′)}pc+1 : I

(p ⊲ gbrT) ⇒ p′ (p◦ (gbrT ◦g
′)) ⇒ g (p ⊲ gbrF) ⇒ p′′ (p◦ (gbrF ◦g

′′)) ⇒ g

Ψ ⊢{(p,g)}pc : brtrue f′;I
(BRTURE)

(pc+1, (p′′,g′′)) ∈ Ψ Ψ ⊢{(p′′,g′′)}pc+1 : I

(p ⊲ gcall) ⇒ p′ (p ⊲ gfun) ⇒ p′′ (p◦ (gfun ◦g
′′)) ⇒ g (f′, (p′,g′)) ∈ Ψ gfun = ((gcall ◦g

′)◦gret)

Ψ ⊢{(p,g)}pc : call lf′;I
(CALL)

(p◦gret) ⇒ g

Ψ ⊢{(p,g)}pc : ret
(RET)

(f′, (p′,g′)) ∈ Ψ (p ⊲ ggoto) ⇒ p′ (p◦ (ggoto ◦g
′)) ⇒ g

Ψ ⊢{(p,g)}pc : goto f′
(GOTO)

Fig. 6.CBP Inference Rules

gbrT , λS,S′.NextS(brture,) S S
′ (whereS.K = w::K′,w = True)

gbrF , λS,S′.NextS(brture,) S S
′ (whereS.K = w::K′,w = False)

gc , λS,S′.NextS(c,) S S
′ (for all otherc)

Fig. 7.Local State and Program Point Transitions

The definitions in Figure 8 are used in these rules. The predicatep ⊲ gι specifies
the state resulting from the state transitiongι, knowing the initial state satisfiesp. The
composition of two subsequent transitionsg andg′ is represented asg ◦ g′, andp ◦ g
refinesg with the extra knowledge that the initial state satisfiesp. The predicatep ⇒ gι
means that the state transitiongι would not get stuck as long as the starting state satisfies
p. The second premise in theSEQ rule means if the current state satisfiesp, after state
transitiongι, the new state satisfiesp′. The last premise in theSEQ rule requires the
composition ofgι andg′′ fulfilling g, knowing the current state satisfiesp.

Function Call and Return.Figure 9(b) shows the meaning of the specification(p,g)
for the functionfoo defined in Figure 9(a). Note thatg may cover multiple instruction
sequences. If a function has multiple return points,g governs all the traces from the
current program point to any return point. Figure 9(c) illustrates a function call tobar
(point B) from foo at pointA (labelpc = 5), with the return addresspc+1 (point D).
The specification ofbar is (pB,gB). Specifications atA andD are(pA,gA) and(pD,gD)
respectively, wheregA governs the code segmentA-E andgD governsD-E.

p⇒ g , ∀S. p S →∃S
′,g S S

′ p ⊲ g , λS. ∃S0,p S0∧g S0 S

g◦g′ , λS,S′′. ∃S
′. g S S

′∧g′ S
′
S
′′ p⇒ p′ , ∀S. p S → p′ S

g⇒ g′ , ∀S,S′. g S S
′ → g′ S S

′ p◦g , λS,S′. p S∧g S S
′

Fig. 8.Connectors forp andg

6

(a) (b) (c)
Fig. 9.The Model for Function Call/Return in CBP

To ensure that the program behaves correctly, we must enforce the following condi-
tions with a special guaranteegfun , λS,S′′.∃S

′,∃S
∗,gcal S S

′∧gB S
′
S
∗∧gret S

∗
S
′′.

– the precondition ofbar should be satisfied,i.e.,∀S,∃S
′.pA S∧gcal S S

′ → pB S
′;

– afterbar returns, callerfoo resumes fromD, ∀S,S′′.pA S → gfun S S
′′ → pD S

′′;
– if the functionbar and the code segmentD-E satisfy their specifications, the spec-

ification for A-E is satisfied,i.e., ∀S,S′′,S′′′.pA S → gfun S S
′′ → gD S

′′
S
′′′ → g S S

′′′.

TheRET rule simply requires that the function has finished its guaranteed transition
at this point. In this rule, we do not need to know any information about the return
address. So it can be used to modularly certify any callee function separately.

Call Stack Invariant.Generalizing the safety requirement, we recursively definethe
“well-formed function call stack” as follows:

WFST(g,Kc,S,Ψ) , ¬∃S
′. g S S

′, whereKc = nil.

WFST(g,Kc,S,Ψ) , ∀S
′.g S S

′ → p′ S
′∧WFST(g′,Kc

′,S′,Ψ),
where∃f,∃Kc

′.Kc = f ::Kc
′,(p′,g′) = Ψ(f).

When the function call stack is empty, we are in the top function which has no
return code pointer,i.e.,¬∃S

′. g S S
′. Then the stack invariant at every step of program

execution is that, at each program point with(p,g), the program stateS must satisfyp
and there exists a well-formed control stack inS. So the stack invariant is:

{(p,g)} Ψ S , p S∧WFST(g,Kc,S,Ψ).

Soundness of CBP.The soundness of the program logic is proved following the
syntactic approach based on the progress and preservation lemmas. It guarantees that
the complete system after linking never gets stuck as long asthe initial state satisfies the
program invariant defined by theWLD rule. Furthermore, the invariant will be always
holding during execution, from which we can derive rich properties of programs.
Lemma 1 (Progress). If Ψ ⊢{s}W, there exists a programW′, such thatW 7−→ W

′.
Lemma 2 (Preservation). If Ψ ⊢{s}W, andW 7−→W

′, then there existss′, Ψ ⊢{s′}W′.
Theorem 3 (CBP Soundness).For all programW, specificationΨ and assertions. If
Ψ ⊢{s}W, then for all natural numbern, there exists a programW′ such thatW 7−→n

W
′.

3 Proof of ByteCode Virtual Machine
In this section, we present how to certify the implementation of a virtual machine
CertVM for BC/0. We first give the formal definition of x86 real-mode machine where
CertVM runs on. Then we introduce the program logic for this machine. Finally, we
show the design, implementation and formal proof of CertVM.

7

(World) W ::= (C,S,pc)
(CodeHeap) C ::= {f ; I}∗

(State) S ::= (H,R,zf)
(Memory) H ::= {l ; w}∗

(RegFile) R ::= {r;w}∗

(Labels) l ,f,pc ::= n (nat nums)
(Flags) zf ::= b

(Bit) b ::= 0 | 1
(Word) w ::= i (integers)

(WordReg) r ::= rAX | rBX | rCX | rDX
(Instr) ι ::= je f | movw w,r | movw rs,rd | movw w(rs),rd | movw rs,w(rd) | addw w,r | subw w,r | cmpw w,r

(Commd) c ::= ι | jmp f | jmpw r

(InstrSeq) I ::= ι;I | jmp f | jmpw r

Fig. 10.Definition of x86 Machine
NextSc,pc S S

′ whereS = (H,R,zf)

if c = thenS
′ =

movw w,r (H,R{r;w},zf)

movw rs,rd (H,R{rd ;R(rs)},zf)

movw rs,w(rd) (H{l ;R(rs)},R,zf), if l = R(rd)+w andl ∈ dom(H)

movw w(rs),rd (H,R{rd ;R(l)},zf), if l = R(rs)+w andl ∈ dom(H)

addw w,r (H,R{r;(R(r)+w)},zf)

subw w,r (H,R{r;(R(r)−w)},zf)

cmpw w,r (H,R,b), b = 0, if w = R(r); b = 1,else
. . . (H,R,zf)

NextPC(c,S) pc pc
′ whereS = (H,R,zf)

if c = thenpc′ =

je f f if zf = 0; pc+1 others
jmp f f

jmpw r f if f = R(r)

. . . pc+1
c = C(pc) NextS(c,pc) S S

′ NextPC(c,S) pc pc
′

(C,S,pc) 7−→ (C,S′,pc′)
(PC)

Fig. 11.Operational semantics of x86 machine

3.1 x86 Machine and SCAP Program Logic

X86 machine is defined in Figure 10. And Figure 11 shows its operational semantics.
This is a simplified version which includes only four generalpurpose registers. We use
SCAP [9] logic system to verify the CertVM implementation. The inference rules of
SCAP program logic are given in Figure 12. The soundness proof of SCAP is carried
out based on the progress and preservation lemmas which are similar to that of CBP.

3.2 The Design of CertVM

CertVM is implemented in real-mode x86 assembly language, and it is executable in
the Bochs simulator. The current implementation of CertVM mainly includes the loader
and the interpreter. Other advanced features such as garbage collection and just in-time
compilation are not included yet.

The memory space of CertVM consists of four major parts: codeheap (C), memory
heap (H), evaluation stack (K) and function call stack (Kc). All of them are located in
x86 machine’s memory heap (Hx) as arrays. In the following analysis, functionbase()
andmax() are used to get the base address and the maximum length ofC, H, K andKc.
And top() denotes the top pointer of stackK andKc.

A loader is designed to launch the bytecode program. It loadsbytecode programs
into C, initializes the memory heapH and the evaluation stacksK (setting the stack
pointersp to zero). For the top level function, the bottom cell of function call stackKc

8

Ψ ⊢{s}W (Well-formed World)
Ψ ⊢ C :Ψ′ Ψ ⊆ Ψ′ Ψ ⊢{s}pc : C[pc] {s} Ψ′

S

Ψ ⊢{s}(C,S,pc)
(WLD)

Ψ ⊢ C :Ψ′ (Well-formed Code Heap)
for all (f,s) ∈ Ψ′ : Ψ ⊢{s}f : C[f]

Ψ ⊢ C :Ψ′
(CDHP)

Ψ1 ⊢ C1 :Ψ′
1 Ψ2 ⊢ C2 :Ψ′

2 C1#C2

Ψ1∪Ψ2 ⊢ C1∪C2 :Ψ′
1∪Ψ′

2
(LINK)

Ψ ⊢{s}I (Well-formed Instr. Sequence)

ι 6∈ {je } Ψ ⊢{(p′′,g′′)}pc+1 : I p ⇒ gι (p ⊲ gι) ⇒ p′′ (p◦ (gι ◦g
′′)) ⇒ g

Ψ ⊢{(p,g)}pc : ι; I
(SEQ)

(f′, (p′,g′)) ∈ Ψ Ψ ⊢{(p′′,g′′)}pc+1 : I

(p ⊲ gjeT) ⇒ p′ (p◦ (gjeT ◦g
′)) ⇒ g (p ⊲ gjeF) ⇒ p′′ (p◦ (gjeF ◦g

′′)) ⇒ g

Ψ ⊢{(p,g)}pc : je f′;I
(JE)

(f′, (p′,g′)) ∈ Ψ (p ⊲ gjmp) ⇒ p′ (p◦ (gjmp ◦g
′)) ⇒ g

Ψ ⊢{(p,g)}pc : jmp f′
(JMP)

(R(r), (p′,g′)) ∈ Ψ (p ⊲ gjmpw) ⇒ p′ (p◦ (gjmpw ◦g′)) ⇒ g

Ψ ⊢{(p,g)}pc : jmpw r
(JMPW)

Fig. 12.SCAP Inference Rules for x86 Machine

#Source code of CertVM | 12 addw %ax, %bx # 2 word long

-{(p f etch, g f etch)} #entry point | 13 movw (%bx), %ax #get entry point

1 fetch: #bytecode fetch | 14 jmpw *%ax #jump to code entry

2 movw (pc), %ax #bytecode pc | -{(pgoto, ggoto)} #instr. sequence 2

3 cmpw $0xFFFF,%ax #compare ra | 15 goto:

4 je fetch #loop forever | 16 movw (pc), %ax # code point

5 decode: | 17 movw $code, %bx # code base

6 movw $code, %bx #code base | 18 addw %ax, %bx # current base

7 addw %ax, %bx #current code | 19 movw 2(%bx),%cx # fetch i.a

8 movw (%bx), %ax #fetch i.f | 20 addw %cx, %cx # 4 bytes instr.

9 dispatch: | 21 addw %cx, %cx #

10 movw $table, %bx #dispatch table | 22 movw %cx, (pc) # target address

11 addw %ax, %bx #offset of code | 23 jmp fetch

Fig. 13.Fragment of CertVM Implementation

is set to -1 (0xFFFF) and the stack pointercsp points to the second cell. And CertVM’s
pc is set to the entry point of the loaded bytecode program. After all the initializations,
it is ready to execute the bytecode program.

Every bytecode instruction is simulated by a sequence of x86assembly instructions.
The simulation of a bytecode instruction consists of four phases: instruction fetching,
decoding, dispatching and interpreting. Figure 13 shows the assembly instruction se-
quence which simulate bytecode instructiongoto as an example. The instruction se-
quence of bytecode fetching, decoding and dispatching is shared by all BC/0 instruc-
tions. Thus the simulation of every bytecode start at the label fetch. After fetching
and decoding a bytecode, CertVM will jump to the unique entrypoint for each byte-
code. For bytecodegoto, the entry point is the label “goto” of line 15 in Figure 13. The
entry points for all BC/0 instructions are stored in a bytecode instruction dispatching
table. Data structure “table” of line 9 in Figure 13 is the dispatching table of CertVM.
It should be preserved during virtual machine execution.

9

Wx.Cx = CVM Wx.pcx = fetch α(W, Wx.Hx)

W ∼ Wx

Fig. 14.Simulation Relation
Hx = Hxc⊎Hxh⊎Hxk⊎Hxkc⊎Hxp⊎Hxo

Hxc(f× 4) = C(f), ∀f ∈ [0,max(C)] Hxh(l × 2) = H(l), ∀l ∈ [0,max(H)]
Hxk(l × 2) = K(l), ∀l ∈ [0,max(K)] Hxkc(l × 2) = Kc(l), ∀l ∈ [0,max(Kc)]

Hxp(0) = pc Hxp(2) = top(K) Hxp(4) = top(Kc)

α(W, Wx.Hx)

Fig. 15.The Memory Map Relation

3.3 Proof of the Correctness of CertVM

Simulation Relation.To execute bytecode programs correctly, the x86 simulationpro-
gram should maintain an invariant for the interpretation ofevery bytecode instruction.
This invariant, called ”simulation relation”, is defined asa relation between the bytecode
machine worldW =(C,(H,K),Kc,pc) and x86 machine worldWx =(Cx,(Hx,R,zf),pcx).
This relation should be maintained when the simulation program executes to the fetch-
ing phase. This relation is shown in in Figure 14, which indicates:

– the code heap of x86 world should be the code of CertVM,
– current program counter of x86 world points tofetch,
– the bytecode machine worldWx is mapped to x86 machine memory heapHx,

following the memory relationα,
– there is no constrain for register file and flag.

We define certified virtual machineWFVM(W,Wx) for all bytecode programW
and X86 programWx as a virtual machine with this simulation relation:
Definition 4 (Well-Formed VM). For all bytecode programW,W′ and x86 program
Wx, if W ∼ Wx andW 7−→ W

′, there exists a x86 programW′
x such thatW′ ∼ W

′
x

andWx 7−→
+

W
′
x.

We use “Plus” simulation relation to describe the bytecode interpretation of VM. This
relation shows that CertVM implementation is satisfied withBCM operational seman-
tics. Once we carry out the simulation relation proof, we geta certified virtual machine.

The Memory Relation.As mentioned before, the code heap, memory heap, evalu-
ation stack and function call stack of bytecode machine are all stored as arrays in x86
machine memory heap. These arrays are denoted asHxc,Hxh,Hxk andHxkc respec-
tively. In addition,Hxp denotes the memory chunk that stores the value ofpc,sp and
csp, andHxo denotes the free memory space.

The exact configuration of this memory heap partition is defined as follows:
Hxc , Hx[base(Hxc),(base(Hxc) + max(C) × 4)]

Hxh , Hx[base(Hxh),(base(Hxh) + max(H) × 2)]

Hxk , Hx[base(Hxk),(base(Hxk) + max(K) × 2)]

Hxkc , Hx[base(Hxkc),(base(Hxkc) + max(Kc) × 2)]

Hxp , Hx[base(Hxp),(base(Hxkc) + 6)]

Note that every bytecode instruction is 4 bytes long, and so it occupiesmax(C)× 4 cells
in Hx. And every item ofK andKc is only 2 bytes long. Therefore, the map relation
between x86 machine memory heap and bytecode world is definedin Figure 15.

Proof by Simulation.From CertVM implementation, we know that the entry point
of every bytecode is labelfetch. To prove its correctness, we only have to show ”sim-
ulation relation” is achieved when CertVM jumps tofetch, and the bytecode world
defined in this relation has its successive state. Thus, we use the specification language
of SCAP to describe this simulation relation.

10

ppre , (validK 2 K) ∧ (validKc 0 Kc)∧ (validRa Kc)

p0 , ppre∧ ((r ;)∗ (∃i >= 0, n 7→ i)), g0 , p0 → (H′(r) = H(n)!)
p3 , ppre∧ ((H(r) >= 1)∧ (H(n) >= 0)), g3 , p3 → (H′(r) = H(r)∗H(n)!)
p11 , p3, g11 , g3

Fig. 16.Specifications: While Loop Example

Suppose the specification atfetch is (pc,gc):

pc , λSx,∃W.α(W,Sx.Hx)∧Enable(c,S,Kc) whereW = (C,S,Kc,pc)∧c = C(pc)
gc , λS

′
x,∃W,W′.W → W

′∧α(W,Sx.Hx)∧α(W′,S′
x.Hx)

pc means that before executingfetch, the x86 machine world should maintain
the simulation relation with a bytecode world that can transit to its next step. Andgc
ensures that after interpreting a bytecode instruction, the simulation relation is still held.
Thus, we only need to use the inference rules of SCAP to prove that:

Ψxc ⊢{[[(pc, gc)]]}fetch : CVM[fetch].

whereΨxc = {(fetch, [[(pc,gc)]]),(f, [[(pc,gc)]])}, f is the entry point in dispatch
table for bytecodec. By the well-formedness of code heap moduleCVM[fetch], we
can conclude that the CertVM is a well-formed virtual machine.
Theorem 5 (Soundness Theorem).For all bytecode programW and x86 program
Wx, if Ψ ⊢{s}W and WFVM(W,Wx), there exists specificationΨx and assertion
sx such thatΨx ⊢{sx}Wx.

Well-formed bytecode program guarantees that every instruction can be executed, while
the CBP inference rules guarantee that the properties are still held in the new program
state. WithWFVM, we know that for every bytecode execution step, there is a well-
formed x86 code heap. The SCAP logic guarantees that all well-formed x86 code heaps
be linked into one single well-formed global one.

4 Example and Implementation
A factorial function implemented with while loop and non-local variables and its caller
are shown in this section to demonstrate the particular features of our logic, and to show
how to write specification and how to prove bytecode programswith CBP. Actually, the
only work a programmer needs to do is to prove bytecode programs with CBP. Then
this logic system guarantees that a well-formed bytecode program will runs on CertVM
without getting stuck provided the x86 machine works.

4.1 Modular Certification: Factorial Function

Get Instruction Sequences.Factorial function source code and the bytecode program
with its specifications for BCM are shown in Figure 1 (Section1). Finding the instruc-
tion sequence is the first step to certify a program. From the definition in Figure 2, we
know that an instruction sequence is a set of instructions ending with unconditional
jump jmp or function returnret. Thus, it can be seen that there are three instruction
sequences in while loop program. The instructions with labels 0∼2 form the first in-
struction block. And the second one is the instructions withlabel from 3 to 10. And the
last one is the block of remain instructions.

Write Specification for Instruction Sequences.Then the programmer needs to give

11

//function caller | -{(p16, g16)} ;spec for caller

void caller(){ | 16 pushc 3 ;push imm 3

int n=3; | 17 pop n ;n = 3

call factor; | 18 call 0 ;call factor()

} | -{(p19, g19)} ;spec for return point

| 19 ret ;caller return

p′pre , (validK 2 K) ∧ (validKc 1 Kc)∧ (validRa Kc)

p16 , p′pre∧ ((r ;)∗ (n;)), g16 , p16 → (H′(r) = 3!)
p19 , p′pre∧ ((r 7→ 3!)∗n 7→ 0)), g19 , p19 → (H′(r) = 3!)
p0 , ?, g0 , ?

Fig. 17.Caller of Factorial Function

code heap specificationΨ, which is a finite mapping from code labelsf to code spec-
ificationss which is a pair(p,g). CBP specifications for code heap are embedded in
the code, enclosed by-{} in shadow box. Specifications of this example are given in
Figure 16. To simplify our presentation, we write the predicatep in the form of a propo-
sition with free variables referring to components of the stateS.

Following the inference rules, the code specifications should be given for these
points: the head of a instruction sequence, the target labels of function call instruc-
tion call and jump instructions (includinggoto andbrture), and the function call return
address which is just after call instructioncall.

The specification of the this procedure is given as(p0,g0). Fromp0, we know that
the values of variablesr andn stored in memory heap are inside the proper scope. The
guaranteeg0 specifies the behavior of the function: the non-local variablesr andn fulfill
(H′(r) = H(n)!).

(p3,g3) is the assertion for while loop body. The pre-conditionp3 means that the
values of variablesr andn are still inside the proper scope. The guaranteeg3 says that
the result which is stored in memory heap must fulfill the loopfixpoint. The specifica-
tion (p11,g11) at the begin point of this while loop is equal to(p3,g3).

Certify and Link Them Together.To check the well-formedness of an instruction
sequence beginning withι, a programmer should apply the appropriate inference rules
and find intermediate assertions such as(p′,g′), which serves both as the post-condition
for ι and as the pre-condition for the remaining instruction sequence.

After that, a programmer is also required to establish the well-formedness of each
individual module via theCDHP rule. Two non-intersecting well-formed code heaps can
then be linked together via theLINK rule. TheWLD rule requires that all code heaps be
linked into one single well-formed global one.

Support Modular Certification.All the code specificationsΨ used in CBP rules are
the local specifications for the current module. Thus, CBP supports modular reasoning
about function call/return in the sense that caller and callee can be in different modules
and be certified separately. When specifying the callee procedure, we do not need any
knowledge about the return address in its pre-condition. The RET rule for the instruction
“ ret” does not have any constraints on the return address.

4.2 Modular Certification: Caller of Factorial Function

Source code and bytecode program with specification of the caller for the while loop
factorial example are shown in Figure 17.

This function just initializes the variablesn, and then calls functionfactor. The spec-
ification at the entry point is(p16,g16). The pre-conditionp16 simply says that the mem-

12

Component Name Number of lines

Basic Utility Definitions & Lemmas 2,367
BCM Machine & Operational Semantics 3,285
CBP Rules & Soundness 1,032
X86 Machine & SCAP logic 2,710
CertVM Memory Layout & Proof 15,429
Bytecode Examples Source Code Spec. & Proof 1,469

Total 26,292

Fig. 18.The Verified Package in Coq

ory cells for variablesn andr are there for this function to run. The guaranteeg16 spec-
ifies the behavior of the caller procedure: the resultr in memory heap is the factorial of
3. The specification of the return point is(p19,g19). p19 means that the memory cells
for variablesn andr are still there. The guaranteeg19 is just the same asg16.

From CAL inference rule, we know that the specification of the callee’s entry point
should be added. The specification(p0,g0) in Figure 16 can be used. Furthermore, the
specification of function entry point defines its interface.A Caller can invoke any callees
which share the same interface.

4.3 Implementation with Coq

Our logic system presented in this paper has been applied to bytecode programs for our
verified stack-based virtual machine. We have formalized BCM, its operational seman-
tics, and the program logic CBP. We have also formalized a X86machine, its opera-
tional semantics, and the SCAP program logic for it in the Coqproof assistant. With
SCAP logic, we proved the simulation relations of our virtual machine CertVM.

The syntax of our machine (both the bytecode machine and x86 machine), is en-
coded in Coq using inductive definitions. Operational semantics of the machine and all
the inference rules of program logic are defined as inductiverelations. The soundness of
the framework itself is formalized and certified in Coq following the syntactic approach.

These examples are usually implemented directly in bytecode and are hard to certify
using the existing approaches. Manually optimized bytecode or code generated by op-
timizing compilers can also be certified using our systems. The proof is also formalized
and implemented in Coq and is machine-checkable.

The Coq implementation has taken several months per person,out of which a sig-
nificant amount of efforts have been put on the implementation of basic facilities, in-
cluding lemmas and tactics for partial mappings and Separation Logic assertions. These
common facilities are independent of the task of certifyingexamples. The implementa-
tion of CBP logic system includes around 3200 lines of Coq encoding of BCM and its
operational semantics, 1000 lines encoding of CBP rules andthe soundness proof. We
have written more than 15 thousand lines of Coq tactics to certify CertVM with SCAP
logic. We also have written about 1500 lines of Coq tactics tocertify practical bytecode
examples, including the while-loop and function call/return.

It is found in our experience that human smartness still plays an important role to
come up with proper program specifications, and the difficulty depends on the property
one is interested in and the subtlety of the algorithms itself. Given proper specifications,
proof construction of bytecode is mostly routine work. Somepremises of inference rules
can be automatically derived after defining lemmas for common instructions.

13

Compared the experiences in CBP with that in SCAP, we found that the code size
ratios of bytecode programs to proofs and assembly code to proofs looks almost the
same. While bytecode is a fairly compact format compared to native code. Most JVM
instructions use only 1 or 2 bytes. Moreover, they are sophisticated instructions that can-
not be translated into a single native processor instruction as a rule. In fact, our CertVM
expand code size by the factor of 15, while most Java compilers expand code size by a
factor of 5 to 10 [23]. With our logic, we only write proof for bytecode programs rather
than write proof for the corresponding assembly code directly. So the workload will be
greatly reduced by a factor of 5 to 10. That will be a significant improvement for fully
certified subroutines with machine checkable proofs.

Extensions and Future Work.The support of object-oriented features such as ob-
jects, references, methods, and inheritance are importantand useful. Extension of the
program logic to support exception handling is straightforward and interesting work.
Following the similar idea of function call/return, reasoning about exceptions is not
much different from reasoning about functions. Our logic system does not support con-
currency yet. There are a number of subtle problems even in the well-used bytecode
programs such as JDK synchronized classes [19]. It is actually an easy work to extend
the machine to support concurrency. But it is difficult to define a simple logic system to
modularly certify concurrent bytecode programs. We will try it in the near future.

On the certified virtual machine, there are also some interesting extensions. Veri-
fication of the useful features such as memory management, just in-time compilation,
garbage collectors will lead to some exciting challenges.

5 Related Works and Conclusion
Logic for Bytecode and Virtual Machine.Quigley [17] has demonstrated that it is possi-
ble to define a Hoare-style logic for bytecode programs to prove the program containing
loops. A program logic [2] which combines Hoare triples for methods with instruction
specifications is presented for a JAVA-like bytecode language by Bannwart and M̈uller.
Their logic supports lots of object-oriented features suchas objects, references, meth-
ods, and inheritance. Benton [3] proposed a typed, compositional logic for a stack-based
abstract machine to verify bytecode programs which are written in an imperative subset
of .NET CIL.

But, all these work only considered logic system for bytecode programs. None of
them took the virtual machine into account. Linking certified bytecode programs with
certified VM is very difficult. An open logic framework was designed to integrate [8]
the proof of different logic systems for the X86 machine only. In this paper, we inte-
grate the separated proof modules of different logic systems for different machine by
simulation relation proof. To our best knowledge, our logicsystem is the first facility to
link certified virtual machine with modularly certified bytecode programs.

Reasoning about Control Stacks.Reasoning about control stacks is extremely diffi-
cult for low-level code programs. STAL and its variations [22] can only treat return code
pointers as first-class code pointers and stacks as “closures”. Tan and Appel [21] use the
implicit finite unions structure to study the low-level language. As a result, they arrived
at continuation-style Hoare logic explainable by indexed model, with a rather convo-
luted interpretation of Hoare triples involving explicit fixpoint approximations. Saabas

14

and Uustalu [18] introduced a compositional natural semantics and Hoare logic based
on the implicit finite unions structure for a simple low-level language with expressions.
Ni and Shao’s work [16] combines the syntactic approach usedin type systems with
logic systems to support code pointer specification. Following the producer/consumer
model, Fengetc. [9] proposed SCAP to modularly certify assembly code with stack-
based control abstractions. Benton’s typed, compositional logic for bytecode programs
uses a higher-level abstract machine with separate data stack and control stack.

We build a Hoare-style logic system to certify bytecode programs which run on
verified virtual machine. As the examples shown, program with complex control stack
operations be certified within our logic. Our BCM is a higher-level machine with a
dedicated function call stack. It looks like Benton’s abstract machine. While our logic
system CBP is established following SCAP’s producer/consumer stack model. This idea
brings much convenience to the integration of SCAP and CBP proof.

Certified Compiler and Interpreter.Large efforts have been made on building reli-
able compiler and interpreter with formal methods. Leagureetc.built a type preserving
JAVA compiler [12] and Chenetc.developed a type preserving optimizing compiler for
MSIL [4]. Chlipala presented a certified compiler from the simply-typed lambda cal-
culus to assembly language [5]. C0 compiler [13], a compilerfrom C subset language
C0 to the DLX machine language, is formal specified and provedin Isabelle/HOL. The
realistic and verified Compcert compiler [14], is developedand verified in Coq.

But all these work only focus on semantics preserving without well-formed proper-
ties of source programs. With the formalization and the certification of the simulation
relation, our work gives a logic system to link the verified bytecode programs with the
verified execution environment. It guarantees that a certified bytecode program runs on
certified virtual machine will never get stuck as long as hardware works. It’s an end-to-
end solution and can be considered as a proof and semantics preserving compiler.

Conclusion.This paper presents a logic system to verify bytecode programs as well
as a corresponding certified stack-based virtual machine. This paper defines a Hoare-
style logic system for modularly specifying bytecode programs with complex stack-
based control abstractions and unstructured control flows.The execution of bytecode
programs is formalized via a design of an appropriate virtual machine, which is im-
plemented in X86 assembly. The implementation of the virtual machine is verified in
a previously published SCAP logic. We proved that for each bytecode program that is
verified in the CBP logic, an equivalent X86 program which is in a simulation relation
can be found. This equivalent program is well-formed in SCAPlogic.

This approach might be powerful and simple enough to become usable in prac-
tice. To certify a bytecode program, a programmer’s task is only required to find the
specification and establish the well-formedness of individual bytecode module. This
logic system guarantees that a certified bytecode program will run on the certified VM
without getting stuck unless hardware faults occur. By our experiment, proving in CBP
instead of directly in SCAP is expected to reduce the workload by a factor of 5-10.

Our work provides a logic system for reasoning about bytecode programs for stack-
based virtual machine and makes an advance toward building aproof-transforming
compilation environment. We believe this work may serve as asolid theoretical foun-
dation to understand and reason about the popular and complex web applications.

15

References

[1] A. W. Appel. Foundational proof-carrying code. InProc. 16th IEEE Symposium on Logic
in Computer Science, pages 247–258. IEEE Computer Society, June 2001.

[2] F. Bannwart and P. M̈uller. A program logic for bytecode. InProceedings of Bytecode05,
Electronic Notes in Theoretical Computer Science, pages 255–273. Elsevier, 2005.

[3] N. Benton. A typed, compositional logic for a stack-based abstractmachine. InIn Proc.
3rd Asian Symposium on Programming Languages and Systems (APLAS), volume 3780 of
LNCS, pages 364–380. Springer-Verlag, 2005.

[4] J. Chen, C. Hawblitzel, F. Perry, M. Emmi, J. Condit, D. Coetzee, and P. Pratikaki. Type-
preserving compilation for large-scale optimizing object-oriented compilers. InProg. Lang.
Design and Impl. (PLDI’08), pages 183–192, New York, NY, USA, 2008. ACM.

[5] A. Chlipala. A certified type-preserving compiler from lambda calculus to assembly lan-
guage. InProg. Lang. Design and Impl. (PLDI’07), pages 54–65, New York, NY, USA,
2007. ACM.

[6] Coq Development Team. The Coq proof assistant reference manual. Version 8.2, 2008.
[7] ECMA. Standard ECMA-335 Common Language Infrastructure. 2006.
[8] X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework for foundational proof-carrying

code. InProc. 2007 Workshop on Types in Lang. Design and Impl., pages 67–78, 2007.
[9] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular verification of assembly code

with stack-based control abstractions. InProg. Lang. Design and Impl. (PLDI’06), pages
401–414, New York, NY, USA, June 2006. ACM Press.

[10] C. A. R. Hoare. An axiomatic basis for computer programming.Communications of the
ACM, 26(1):53–56, Oct. 1969.

[11] Kevin Lawton and Bryce Denney and N. David Guarneri and Volker Ruppert and
Christophe Bothamy. Bochs user manual. http://bochs.sourceforge.net/, 2008.

[12] C. League, Z. Shao, and V. Trifonov. Precision in practice: A type-preserving java compiler.
In In: Proc. Int’l. Conf. on Compiler Construction. (2003), pages 106–120. Springer, 2003.

[13] D. Leinenbach, W. Paul, and E. Petrova. Towards the formal verification of a c0 compiler:
Code generation and implementation correctnes. InSEFM ’05: Proceedings of the Third
IEEE International Conference on Software Engineering and Formal Methods, pages 2–12,
Washington, DC, USA, 2005. IEEE Computer Society.

[14] X. Leroy. A formally verified compiler back-end. draft, 2008.
http://pauillac.inria.fr/∼xleroy/publi/compcert-backend.pdf.

[15] T. Lindholm and F. Yellin. The java virtual machine specification (second edition), 1999.
[16] Z. Ni and Z. Shao. Certified assembly programming with embeddedcode pointers. In

POPL’06, pages 320–333, 2006.
[17] C. L. Quigley. A programming logic for java bytecode programs. In Proc. of 16th Int. Conf.

on Theorem Proving in Higher-Order Logics, pages 41–54. Springer-Verlag, 2003.
[18] A. Saabas and T. Uustalu. Compositional type systems for stack-based low-level languages.

In Proc. of 12th Computing, Australasian Theory Symp.,, pages 27–39. Australian, 2006.
[19] K. Sen. Race directed randomized dynamic analysis of concurrent programs. InProc. 2008

ACM Conf. on Prog. Lang. Design and Impl., pages 11–21. ACM Press, June 2008.
[20] Sun Microsystem. Top25 bugs. http://bugs.sun.com/bugdatabase/top25 bugs.do/, 2009.
[21] G. Tan and A. W. Appel. A compositional logic for control flow. InVMCAI’06, volume

3855 ofLNCS, pages 80–94. Springer, 2006.
[22] J. C. Vanderwaart and K. Crary. A typed interface for garbage collection. InTypes in Lang.

Design and Impl. (TLDI’03), pages 109–122, 2003.
[23] M. Weiss, F. de Ferrire, B. Delsart, C. Fabre, F. Hirsch, E. A. Johnson, V. Joloboff, F. Roy,

F. Siebert, and X. Spengler. Turboj, a java bytecode-to-native compiler. In Proc. LCTES98,
volume 1474 ofLNCS, pages 119–130. Springer-Verlag, 1998.

16

