
Modular Certification of Bytecode Programs

Yuan Dong† Shengyuan Wang† Liwei Zhang† Yunmin Zhu† Ping Yang‡

†Tsinghua University ‡Beijing Language and Culture University
{dongyuan, wwssyy}@tsinghua.edu.cn {zhanglw06, zhuym06}@mails.tsinghua.edu.cn yangp@blcu.edu.cn

Abstract

Bytecode which runs on stack-based virtual machine, such as .NET
CIL and JAVA bytecode, is the key technology for hardware- and
operating system-independence. Although some efforts have been
made on building logic system for bytecode programs, modular
certification of bytecode still remains challenging because of the
complexity of abstract control stack and the lack of control flow
structure information.

To tackle these challenges, this paper presents a logic frame-
work to verify bytecode programs. We define A Hoare-logic like
system for a bytecode language similar to JAVA bytecode and CIL.
This logic can fully support abstract control stack and unstructured
control flow for modular certification of bytecode programs. This
system is expressive and fully mechanized. We prove its soundness
and demonstrate its power by certifying some bytecode programs
in the Coq proof assistant. This work not only provides a solid the-
oretical foundation for reasoning about bytecode, but also makes
an important advance toward building a certified proof-preserving
compiler.

1. Introduction

Bytecode, such as JAVA bytecode [12] and .NET Common Inter-
mediate Language (CIL) [8], is the key component of the tech-
nology responsible for hardware- and operating system- indepen-
dence. It is the base to protect users from malicious programs. They
can run on a stack-based virtual machine directly or can be trans-
lated into native machine codes by another compiler.

Why Bytecode? Formal reasoning about bytecode programs is re-
quired both for trustworthy web application building and for proof-
transforming compilation. Many kinds of program logic for rea-
soning about high-level language have been proposed [6]. Can we
find a way carrying or transforming these proofs to mid-level lan-
guages, like bytecode, and checking them just before running? Be-
sides, following Foundational Proof-Carrying Code (FPCC) idea,
machine level programs involving the features such as control stack
and interrupt based concurrency can be certified with proper logic
system [10, 9]. However, the proofs of any non-trivial programs are
really hard to carry out manually. Can we obtain the proofs from a
much higher level such as bytecode?

Major Challenges. To formally certify bytecode programs, a pro-
gram logic for virtual machine is required to support both runtime
stacks and unstructured control flow.

Runtime stacks are critical components of any modern software.
Correct implementation of these constructs is of utmost importance
to the safety and reliability of any bytecode programs. Stack opera-
tions are very complex and difficult to reason about because they in-
volve subtle low-level invariants: return code pointers should have
restricted scopes, making it even harder to track their lifetime.

To overcome the lack of structures in low-level code, many
proof-carrying code (PCC) systems [1, 13] support stack-based
controls by using continuation-passing style (CPS) which treats re-
turn addresses as first-class code pointers. It is a general seman-
tic model to support the control abstractions above, but CPS-based
reasoning requires specification of continuation pointers using “im-
predicative types” [13, 14]), which makes the program specification
complex and hard to understand. It is also difficult to specify first-
class code pointers modularly in logic: because of the circular ref-
erences between code pointers and data heap (which may in turn
contains code pointers).

SCAP, a simple but flexible Hoare-style framework for modular
verification of assembly code with all kinds of stack-based control
abstractions was presented by Fenget al. [10]. SCAP does follow a
much simpler pattern instead of the general first-class code pointers
to handle stack-based control abstractions.

Benton [4] proposed a typed, compositional logic for a stack-
based abstract machine to support bytecode programs modular
reasoning about. To protect return code pointers, he uses a JVM-
like higher-level abstract machine with separate data stack and
control stack; the latter cannot be touched by regular instructions
except forcall and ret. Although some efforts [15, 3] on building
logic system for bytecode programs have been make, the task still
remains challenging because of the complexity of abstract control
stack and the lack of control flow structure information due to the
flat nature of bytecode programs. The major challenges are:

• Fully stack control support in a simple way for bytecode. Can
we deal with it in a natural and general way to support modular
certifying as that have been done for low-level code?

• Pervasive logic framework. Is the idea of logic system for as-
sembly code certification applicable to bytecode programs for
stack-based virtual machine? How can we link certified byte-
code program and certified VM together? Is it feasible to build
a logic framework in which the proofs and the semantics of
bytecode programs can be preserved during execution.

Our Contributions. In this paper we present a novel Hoare-logic
like framework for certifying bytecode programs (namedCBP) that
supports modular verification of bytecode programs with all kinds
of stack-based control abstractions and unstructured control flow.

This system is fully mechanized. We give the complete sound-
ness proof and a full verification of an example in the Coq proof
assistant [7]. This program logic applies FPCC concepts to byte-
code programs for partial correctness properties verification.

Building upon previous work on program verification, we make
the following contributions:

• As far as we know, our work presents the first program logic
facility for modularly certifying the partial correctness of byte-
code programs. This logic specifies an invariant at each pro-
gram point using a pair of a precondition and a “local” guaran-
tee (which states the obligation that the current function must

(World) W ::= (C,S,Kc,pc)
(CodeHeap) C ::= {f ; I}∗

(State) S ::= (H,K)
(ProgCnt) pc ::= n (nat nums)
(Memory) H ::= {k ; w}∗

(EStack) K ::= nil | w ::K
(CStack) Kc ::= nil | f ::Kc
(Labels) f,k ::= n (nat nums)
(Word) w ::= i (integers)
(Instr) ι ::= pushc w | pushv k | pop k | binop m | unop m

| brtrue f | call f
(Commd) c ::= ι | ret | goto f

(InstrSeq) I ::= ι;I | ret | goto f
(OprNum) m ::= {+ . . ./,−·· ·+}

Figure 1. Definition of A Bytecode Machine

C[f] ,

{

c c = C(f) andc = goto f′, or ret
ι;I ι = C(f) andI = C[f+1]

(F{a ; b})(x) ,

{

b if x = a
F(x) otherwise.

Figure 2. Definition of Representations

fulfill before it can return). These guarantees, when chained to-
gether, are used to specify the logical control stack. Soundness
of our framework is formally proved in the Coq proof assistant.

• This logic framework is also, to our best knowledge, the first
taste to extend FPCC concepts which is powerful for machine
code certification to mid-level bytecode language. Our experi-
ence demonstrates that this kind of Hoare-logic framework is
applicable to bytecode programs. As we know, an interpreter is
similar to code generator of a compiler. So, it can be seen that
this approach is a feasible way to build a pervasive Hoare-like
logic framework for proof and semantics preserving compila-
tion from bytecode to machine code.

This work not only provides a foundation for reasoning about
bytecode programs, but also makes an important step toward build-
ing an environment in which verified mid-level bytecode programs
with their proofs can be transformed to machine code with seman-
tics and proof preservation.

2. CBPLogic for ByteCode Virtual Machine

In this section, we first present the formal definition and the opera-
tional semantics of our bytecode machineBVM. Then, we give the
program logicCBPfor certifying bytecode programs.

2.1 Bytecode Machine Definition

In Figure 1, we showBVM for our BC/0. The whole machine
configuration is called a “World” (W), which consists of a read-
only code heap (C), an updatable state (S), a function call stack
(Kc), and a program counter (pc). The code heap is a finite partial
mapping from code labels (f) to instruction sequences (I). The state
S contains a memory heap (H) and an evaluation stack (K). The
program counterpc points to the current command inC. We define
the instruction sequenceI as a sequence of sequential instructions
ending with jump or return commands.C[f] extracts an instruction
sequence starting fromf in C, as defined in Figure 2. We use the
dot notation to represent a component in a tuple,e.g.,S.K means
the stack in stateS. We also use functiontop() andmax() to get
the current pointers and the upper bounds of stackK, Kc. Valid K

or Kc means that current pointertop() is in domain[0,max()] and
points to some value.

2.2 TheBVM Operational Semantics

In Figure 3, we also define the machine configuration transition
operational semantics of each instruction in a formal way. Here

NextSc,pc,Kc S S
′ whereS = (H,K)

if c = if Enable(c) Kc S = thenS
′ =

pushc w valid(K) (H,w ::K)
pushv f valid(K) andH(f) = w (H,w ::K)
pop f K = w ::K′ (H{f;w},K′)
binop bop K = w1 ::w2 ::K′,w = bop(w1,w2) (H,w ::K′)
unop uop K = w1 ::K′,w = uop(w1) (H,w ::K′)
brtrue f K = w ::K′,w = True or False (H,K′)
call f valid(Kc) (H,K)
ret Kc = f ::Kc

′ (H,K)
. . . (H,K)

NextKc(c,pc,S) Kc Kc
′ whereS = (H,K)

if c = if Enable(c) Kc S = thenKc
′ =

call f valid(Kc) (pc+1) ::Kc)
ret Kc = f ::Kc

′
Kc

′

. Kc

NextPC(c,S,Kc) pc pc
′ whereS = (H,K)

if c = if Enable(c) Kc S = thenpc′ =

brtrue f K = w ::K′,w = True f

K = w ::K′,w = False pc+1
call f valid(Kc) f

ret Kc = f ::Kc
′ f

goto f f

. pc+1
c = C(pc) Enable(c) Kc S

NextS(c,pc,Kc) S S
′ NextKc(c,pc,S) Kc Kc

′ NextPC(c,S,Kc) pc pc
′

(C,S,Kc,pc) 7−→ (C,S′,Kc
′,pc′)

(PC)

Figure 3. operational semantics ofBVM
;method: factorial, while loop with specification

-{(p0, g0)} ;instruction sequence 1, method entry point

0 pushc 1 ;push immediate data 1
1 pop r ;r = 1
2 goto 11 ;jump to the end of while loop

-{(p3, g3)} ;instruction sequence 2, loop start here

3 pushv r ;push variable r
4 pushv n ;push variable n
5 binop* ;r*n
6 pop r ;save variable r
7 pushv n ;push variable n
8 pushc 1 ;push immediate data 1
9 binop_ ;n-1
10 pop n ;save variable n

-{(p11, g11)} ;instruction sequence 3

11 pushv n ;push var n
12 pushc 0 ;push imm 0
13 binop# ;n#0?
14 brture 3 ;conditional goto
15 ret ;function ret

Figure 4. Stack-Based Bytecode Program

Enable(c) Kc S gives the weakest condition for instructionc to
execute. The relationNextS(c,pc,Kc) shows the transition of states
by executingc with program counterpc and call stackKc. While
NextPC(c,S,Kc) shows howpc changes afterc is executed withS
and Kc. NextKc(c,pc,S) gives theKc changes afterc execution
with program counterpc andS.

The instruction set captures the most basic and commonBVM,
which is similar to JAVA bytecode or .NET CIL. Semantics of most
instructions are straightforward.

The execution of programs is modeled as a small-step transition
from one world to another.W 7−→ W

′ made by executing the
instruction pointed to bypc.

A BC/0 bytecode program which involving while loop control
structure forBVM is shown in Figure 4. It can be compiled from
the following source code.

2 2009/6/3

(Pred) p ∈ CStack→ State→ Prop

(Guarantee) g ∈ State→ State→ Prop

(Spec) s ::= (p,g)

(CdHpSpec) Ψ ::= {(f1,s1), . . . ,(fn,sn)}

(MPred) m ∈ Memory→ Prop

Figure 5. Specification Constructs forCBP

True , λH. True emp , λH. H = ∅

l 7→ w , λH. H = {l ; w} l 7→ , λH. ∃w. (l 7→ w) H

H1♯H2 , dom(H1)∩dom(H1) = ∅

H1⊎H2 ,

{

H1∪H2 if H1♯H2
undefined otherwise

m1 ∗m2 , λH. ∃H1,H2. (H1⊎H2 = H)∧m1 H1∧m2 H2

p∗m , λS. ∃H1,H2. (H1⊎H2 = S.H)∧p S|H1 ∧m H2

Figure 6. Definitions of “Separation Logic” Assertions

int factor(){
r = 1;
while(n != 0){ r = r*n; n = n-1; }

}

You can omit the contents in the shadow box here. We will
discuss them more details in the next section. To certify a program
like this, the challenge is to formalize and capture the invariant.

2.3 Specification Language

We use the mechanizedmeta-logicwhich is implemented in the
Coq proof assistant [7] as our specification language. The logic
corresponds to a higher-order predicate logic with inductive defi-
nitions. To specify a program with code heapC, the programmer
must insert specificationss at instruction sequence start points, see
Figure 4. As shown in Figure 5, the specifications is a pair(p,g).
The assertionp is a predicate over function call stackKc and pro-
gram stateS (its meta-type in Coq is a function that takesKc and
S as argument and returns a proposition), while guaranteeg is a
predicate over two program states.

As we can see, theEnable(c) defined in Figure 3 is a specialp.
And theNextS(c,pc) relation is a special form ofg which is over
the two adjacent states. We usep to specify the precondition over
function call stack, memory heap and stack. And useg to specify
the guaranteed behavior from the specified program point to the
point when thecurrent function returns.

SpecificationΨ for code heapC associates code labelsf with
correspondings. Note that multiples may be associated with the
samef, just as a function may have multiple specified interfaces.

We use the predicatem to specify the memory heap. To enforce
the memory heap partition between different functions, we encode
in Figure 6 Separation Logic connectors in our specification lan-
guage (which is also our meta-logic). We also use standard separa-
tion logic primitives [16] as assertion operators. The definitions are
self-evident and we do not explain the details here.

2.4 The CBP Program Logic

We use the following judgments to define the inference rules:
Ψ ⊢ {s}W (well-formed world)
Ψ ⊢ C :Ψ′ (well-formed code heap)
Ψ ⊢ {s}I (well-formed instruction sequence)

Inference rules of the program logic are shown in Figure 7.

Program Invariants. The WLD rule formulates the program in-
variant enforced by our program logic:
• The code heapC needs to be well-formed follow theCDHP rule.

Ψ ⊢{s}W (Well-formed World)

Ψ ⊢ C :Ψ′ Ψ ⊆ Ψ′ Ψ ⊢{s}pc : C[pc] {s} Ψ′
S

Ψ ⊢{s}(C,S,pc)
(WLD)

Ψ ⊢ C :Ψ′ (Well-formed Code Heap)
for all (f,s) ∈ Ψ′ : Ψ ⊢{s}f : C[f]

Ψ ⊢ C :Ψ′
(CDHP)

Ψ1 ⊢ C1 :Ψ′
1 Ψ2 ⊢ C2 :Ψ′

2 C1#C2

Ψ1∪Ψ2 ⊢ C1∪C2 :Ψ′
1∪Ψ′

2
(LINK)

Ψ ⊢{s}I (Well-formed Instr. Sequence)
ι 6∈ {brtrue ,call } Ψ ⊢{(p′′,g′′)}pc+1 : I

p ⇒ gι (p ⊲gι) ⇒ p′′ (p◦ (gι ◦g
′′)) ⇒ g

Ψ ⊢{(p,g)}pc : ι; I
(SEQ)

(f′, (p′,g′)) ∈ Ψ Ψ ⊢{(p′′,g′′)}pc+1 : I

(p ⊲gbrtureT) ⇒ p′ (p◦ (gbrtureT ◦g
′)) ⇒ g

(p ⊲gbrtureF) ⇒ p′′ (p◦ (gbrtureF ◦g
′′)) ⇒ g

Ψ ⊢{(p,g)}pc : brtrue f′;I
(BRTURE)

(pc+1, (p′′,g′′)) ∈ Ψ Ψ ⊢{(p′′,g′′)}pc+1 : I

(p ⊲gcall) ⇒ p′ (p ⊲gfun) ⇒ p′′ (p◦ (gfun ◦g
′′)) ⇒ g

(f′, (p′,g′)) ∈ Ψ gfun = ((gcall ◦g
′)◦gret)

Ψ ⊢{(p,g)}pc : call lf′;I
(CALL)

(p◦gret) ⇒ g

Ψ ⊢{(p,g)}pc : ret
(RET)

(f′, (p′,g′)) ∈ Ψ (p ⊲ggoto) ⇒ p′ (p◦ (ggoto ◦g
′)) ⇒ g

Ψ ⊢{(p,g)}pc : goto f′
(GOTO)

Figure 7. CBP Inference Rules

• The imported interfaceΨ is a subset of the exported interface
Ψ′, thereforeC is self-contained and each imported specifica-
tion has been certified.

• Currentpc has a specifications in Ψ, thus the current instruc-
tion sequenceC[pc] is well-formed with respect tos.

• Given exportedΨ′, the current stateS satisfies the assertions.

Program Modules. In theCDHPrule,Ψ contains specifications for
external code (imported by the local moduleC), while Ψ′ contains
specifications for code blocks in the moduleC for other modules.
Thus, theCBP logic supportsseparate verificationof program
modules. Modules are modeled as small code heaps which contain
at least one code block. The specification of a module contains not
only specifications of the code blocks in the current module, but
also specifications of external code blocks which will be called
by this module. The well-formedness of each individual module
is established via theCDHP rule. Then, two non-intersecting well-
formed modules can then be linked together via theLINK rule. The
WORLD rule requires that all modules be linked into a well-formed
global code heap.

Sequential Instructions. Like traditional Hoare-logic [11], our
logic also uses the pre- and postcondition as specifications for pro-
grams. TheSEQ rule is aschemafor instruction sequences starting
with an instructionι (ι cannot be conditional jump or function call
instructions). It says it is safe to execute the instruction sequenceI

starting at the code labelpc, given the imported interface inΨ and
a precondition(p,g). An intermediate specification(p′′,g′′) with
respect to which the remaining instruction sequence is well-formed
should be found. It is also used as a post-condition for the current
instructionι. We usegι to represent the state transition made by
the instructionι, which is defined in Figure 9 and Figure 3. Since
NextS does not depend on the current program counter for these
instructions “ ” is used to represent arbitrarypc.

The definitions in Figure 8 are used in these rules. The predicate
p ⊲ gι specifies the state resulting from the state transitiongι,
knowing the initial state satisfiesp. It is the strongest post condition

3 2009/6/3

p⇒ g , ∀S. p S →∃S
′,g S S

′ p ⊲g , λS. ∃S0,p S0∧g S0 S

g◦g′ , λS,S′′. ∃S
′. g S S

′ ∧g′ S
′
S
′′ p⇒ p′ , ∀S. p S → p′ S

g⇒ g′ , ∀S,S′. g S S
′ → g′ S S

′ p◦g , λS,S′. p S∧g S S
′

Figure 8. Connectors forp andg

gbrtureT , λS,S′.NextS(brture,) S S
′ (whereS.K = w::K′,w = True)

gbrtureF , λS,S′.NextS(brture,) S S
′ (whereS.K = w::K′,w = False)

gc , λS,S′.NextS(c,) S S
′ (for all otherc)

Figure 9. Local State and Program Point Transitions

(a) (b) (c)

Figure 10. The Model for Function Call/Return in CBP

aftergι. The composition of two subsequent transitionsg andg′ is
represented asg ◦g′, andp ◦g refinesg with the extra knowledge
that the initial state satisfiesp.

The predicatep ⇒ gι means that the state transitiongι would
not get stuck as long as the starting state satisfiesp. The second
premise in theSEQ rule means if the current state satisfiesp, after
state transitiongι, the new state satisfiesp′. The last premise in the
SEQrule requires the composition ofgι andg′′ fulfilling g, knowing
the current state satisfiesp.

To check the well-formedness of an instruction sequence begin-
ning with ι, the programmer needs to find an intermediate specifi-
cation(p′′,g′′), which serves both as the postcondition forι and as
the precondition for the remaining instruction sequence. As shown
in theSEQ rule, we check that:

• the remaining instruction sequence is well-formed with regard
to the intermediate specification;

• the NextS relations for these instructions require the target
stack pointer to be in the domain of stack, therefore the premise
p⇒ gι requires thatp contains the target stack cell ownership;

• p′′ is satisfied by the resulting state ofι; and
• if the remaining instruction sequence satisfies its guaranteeg′′,

the original instruction sequence satisfiesg.

Function Call and Return. A precondition for an instruction
sequence contains a predicatep specifying the current state, and
a guaranteeg describing the relation between the current state and
the state at the return point of the current function (if the function
ever returns). Figure 10(b) shows the meaning of the specification
(p,g) for the functionfoo defined in Figure 10(a). Note thatg may
cover multiple instruction sequences. If a function has multiple
return points,g governs all the traces from the current program
point to any return point.

Figure 10(c) illustrates a function call tobar (point B) from
foo at pointA (labelpc = 5), with the return addresspc+1 (point
D). The specification ofbar is (pB,gB). Specifications atA andD
are(pA,gA) and(pD,gD) respectively, wheregA governs the code
segmentA-E andgD governsD-E.

To ensure that the program behaves correctly, we need to en-
force the following conditions:

• the precondition of functionbar should be satisfied,i.e.,

∀S,∃S
′.pA S∧gcal S S

′ → pB S
′;

• afterbar returns, callerfoo resumes its execution fromD,

∀S,S′′,S′,S∗.pA S → gcal S S
′ → gB S

′
S
∗ → gret S

∗
S
′′ → pD S

′′;

• if the function bar and the code segmentD-E satisfy their
specifications, the specification forA-E is satisfied,i.e.,

∀S,S′′,S′′′,S′,S∗.pA S →
gcal S S

′ → gB S
′
S
∗ → gret S

∗
S
′′ → gD S

′′
S
′′′ → g S S

′′′;

From these premises, we can define a special guaranteegfunfor
calleegfun , λS,S′′.∃S

′,∃S
∗,gcal S S

′ ∧gB S
′
S
∗ ∧gret S

∗
S
′′. Thus, we

can rewrite last two premises as:

∀S,S′′.pA S → gfun S S
′′ → pD S

′′;

and
∀S,S′′,S′′′.pA S → gfun S S

′′ → gD S
′′

S
′′′ → g S S

′′′.

Above conditions are enforced by theCAL rule shown in Fig-
ure 7. It can be seen thatgfun describes the state transition from
function call point to the return point.

It also should be noticed that we do not require a particular
return value but only require that stack contain a code pointer
specified in localΨ at the return stateS′′, which is provable based
on the knowledge ofp andgfun. This means that out logic can be
used to certify any convention for multi-return function call.

TheRET rule is straightforward. It simply requires that the func-
tion has finished its guaranteed transition at this point. So a state
transitiongret should satisfy the remaining behavior of the callee
function g. In this rule, we do not need to know any information
about return address. So it can be used to support modular certifi-
cation of any callee function without knowing the caller.

Call Stack Invariant. Generalizing the safety requirement, we
recursively define the “well-formed function call stack with depth
n” as follows:

WFST(g,Kc,S,Ψ) , ¬∃S
′. g S S

′, whereKc = nil.

WFST(g,Kc,S,Ψ) , ∀S
′.g S S

′ → p′ S
′ ∧WFST(g′,Kc

′,S′,Ψ),
whereKc = f ::Kc

′,(p′,g′) = Ψ(f).

When the function call stack is empty, we are in the outermost
function which has no return code pointer. Thus, there exists noS

′

at which the function can return,i.e.,¬∃S
′. g S S

′.
Then the stack invariant we need to enforce is that, at each

program point with specification(p,g), the program stateS must
satisfy p and there exists a well-formed control stack inS. The
invariant is formally defined as:

{(p,g)} Ψ S , p S∧WFST(g,Kc,S,Ψ).

The actual depth of the function call stack is not considered in
this definition. We do not specify the other features of the stack in
the invariant, which makes our logic very general and flexible to
use.

We should prove that this invariant holds at every step of pro-
gram execution. The stack invariant essentially explains why we
can have such a simpleRET rule, which “typechecks” the return
instruction without requiring a valid code pointer.

Other Instructions. The execution ofbrture may either fall
through or jump to the target code label, depending on whether
the condition holds. So in theBRTURE rule, we usegbrtureT and
gbrtureF to represent identity transitions with extra knowledge about
stackK. We also need to know thatp contains the ownership of the

4 2009/6/3

p0 , (r ;)∗ (∃i >= 0, n 7→ i), g0 , H
′(r) = H(n)!

p3 , (H(r) >= 1)∧ (H(n) >= 0), g3 , H
′(r) = H(r)∗H(n)!

p11 , p3, g11 , g3

Figure 11. Specifications: While Loop Example

target stack cell. A direct jump is safe (ruleGOTO) if the current as-
sertion can imply the assertion of the target code label as specified
in Ψ. It should be viewed as a specialization ofBRTURE.

Soundness of CBP. The soundness of the program logic is carried
out following the syntactic approach in Coq proof assistant. Based
on the progress and preservation lemmas, the soundness ofCBP
guarantees that the complete system after linking never gets stuck
as long as the initial state satisfies the program invariant defined
by theWLD rule. Furthermore, the invariant will be always holding
during execution, from which we can derive rich properties of pro-
grams. It also guarantees that the specifications inΨ hold when the
corresponding program points are reached bygoto or call instruc-
tions and hold at the boundary of program modules. The soundness
(theorem??) proof has been formally encoded in Coq.
Lemma 2.1 (CBP Progress)If Ψ ⊢{s}W, then there exists a pro-
gramW

′, such thatW 7−→ W
′.

Lemma 2.2 (CBP Preservation)If Ψ ⊢{s}W, and W 7−→ W
′,

then there existss′, Ψ ⊢{s′}W′.

3. Example and Implementation

3.1 Modular Certification: While loop Factorial Function

A factorial function implemented with while loop and non-local
variables is shown in this section to demonstrate particular features
of our logic, and to show how to write specification and how to
prove bytecode programs withCBP.

Get Instruction Sequences.Factorial function source code and
the bytecode program with its specifications forBVM are shown
in Figure 4 (Section 2). Finding the instruction sequence is the
first step to certify a program. From the definition in Figure 1, we
know that an instruction sequence is a set of instructions ending
with unconditional jumpjmp or function returnret.

Thus, it can be seen that there are three instruction sequences
in while loop program. Labels 0∼2 form the first instruction block.
And the second one is the instruction block from label 3 to 11. And
labels 11∼15 is the block of remain instructions.

Write Specification for Instruction Sequences.Then the pro-
grammer needs to give code heap specificationΨ, which is a finite
mapping from code labelsf to code specificationss which is a pair
(p,g). CBPspecifications for code heap are embedded in the code,
enclosed by-{} in shadow box. Specifications of this example are
given in Figure 11. To simplify our presentation, we write the pred-
icatep in the form of a proposition with free variables referring to
components of the stateS.

Following the inference rules, the code specifications should
be given for these points: the head of a instruction sequence, the
target labels of function call instructioncall and jump instructions
(including goto and brture), and the function call return address
which is just after call instructioncall.

The specification of the this procedure is given as(p0,g0). From
p0, we know that the values of variablesr and n which stored
in memory heap are inside the proper scope. The guaranteeg0
specifies the behavior of the function: the non-local variablesr and
n which are saved in memory fulfill(H′(r) = H(n)!).

(p3,g3) is the assertion for while loop body. The precondition
p3 means that the values of variablesr and n are still inside the
proper scope. The guaranteeg3 says that the result which is stored
in memory heap must fulfill the loop fixpoint. The specification
(p11,g11) at the begin point of this while loop is equal to(p3,g3).

//function caller | -{(p16, g16)} ;spec for caller

void caller(){ | 16 pushc 3 ;push imm 3
int n=3; | 17 pop n ;n = 3
call factor; | 18 call 0 ;call factor()

} | -{(p19, g19)} ;spec for return point

| 19 ret ;caller return

Figure 12. Caller of Factorial Function
p16 , (r ;)∗ (n;), g16 , H

′(r) = 3!
p19 , (r 7→ 3!)∗n 7→ 0), g19 , g16
p0 , ?, g0 , ?

Figure 13. Specifications: Caller of the Recursive Factorial

Certify and Link Them Together. To check the well-formedness
of an instruction sequence beginning withι, a programmer should
apply the appropriate inference rules and find intermediate asser-
tions such as(p′,g′), which serves both as the postcondition forι
and as the precondition for the remaining instruction sequence.

After that, a programmer is also required to establish the well-
formedness of each individual module via theCDHP rule. Two non-
intersecting well-formed code heaps can then be linked together via
the LINK rule. TheWLD rule requires that all code heaps be linked
into one single well-formed global one.

Support Modular Certification. All the code specificationsΨ
used in CBP rules are thelocal specifications for the current
module. Thus, CBP supports modular reasoning about function
call/return in the sense that caller and callee can be in different
modules and be certified separately. When specifying the callee
procedure, we do not need any knowledge about the return address
in its precondition. TheRET rule for the instruction “ret” does not
have any constraints on the return address.

3.2 Modular Certification: Caller of Factorial Function

Source code and bytecode program with specification of the caller
for the while loop factorial example are shown in Figure 12.

This function just initializes the variablesn, and then calls func-
tion factor. The specification at the entry point is(p16,g16). The
preconditionp16 simply says that the memory cells for variablesn
andr are there for this function to run. The guaranteeg16 specifies
the behavior of the caller procedure: the resultr in memory heap
is the factorial of 3. The specification of returns point is(p19,g19).
p19 means that the memory cells for variablesn andr are still there.
The guaranteeg19 is just the same asg16.

From CAL inference rule, we know that the specification of the
callee’s entry point should be added. The specification(p0,g0) in
Figure 11 can be used. Furthermore, the specification of function
entry point defines its interface. Caller can use any callees which
share the same interface.

3.3 Implementation with Coq

Our logic framework presented in this paper has been applied to
bytecode programs for our verified stack-based virtual machine.
We have formalizedBVM, its operational semantics, and the pro-
gram logicCBP.

The syntax of our machine is encoded in Coq using inductive
definitions. Operational semantics of the machine and all the infer-
ence rules of program logic are defined as inductive relations. The
soundness of the framework itself is formalized and proved in Coq
following the syntactic approach.

CiC, the underlying higher-order logic in Coq, rather than a
new assertion language known as the deep embedding approach
is adapted as our assertion language. This shallow embedding ap-
proach greatly reduces the workload of formulating our logic sys-

5 2009/6/3

Component Name Number of lines

Basic Utility Definitions & Lemmas 2,354
Machine & Operational Semantics 3,285
CBP Rules & Soundness 1,166
IR Examples Source Code and Spec. 168∗

Caller Main Spec. & Proof 1,304
Total 8277

∗ They are the Coq source files containing the encoding of the 19
lines real bytecode code, including program specification and
factorial related lemmas .

Figure 14. The Verified Package in Coq

tems. The proof is also formalized and implemented in Coq and is
machine-checkable.

These examples are usually implemented directly in bytecode
and are hard to certify using the existing approaches. Manually
optimized bytecode or code generated by optimizing compilers can
also be certified using our systems.

The implementation ofCBP logic includes around 3300 lines
of Coq encoding ofBVM and its operational semantics, 1200 lines
encoding ofCBP rules and the soundness proof. We have written
several hundred lines of Coq tactics to certify practical examples,
including the while-loop and function call/return.

The Coq implementation has taken several man-months, out
of which a significant amount of efforts have been put on the
implementation of basic facilities, including lemmas and tactics for
partial mappings and Separation Logic assertions. These common
facilities are independent of the task of certifying examples and can
be reused in future projects.

It is found in our experience that human smartness still plays an
important role to come up with proper program specifications, and
the difficulty depends on the property one is interested in and the
subtlety of the algorithms itself. Given proper specifications, proof
construction of bytecode is mostly routine work. Some premises of
inference rules can be automatically derived after defining lemmas
for common instructions.

Compared the experiences inCBPwith that in SCAP, we found
that the code size ratios of bytecode programs to their proofs and
assembly codes to their proofs looks almost the same. While byte-
code is a fairly compact format compared to native code. Most JVM
instructions use only 1 or 2 bytes. Moreover, they are sophisticated
instructions that cannot be translated into a single native processor
instruction as a rule. In fact, our CertVM expand code size by the
factor of 15, while most Java compilers expand code size by a fac-
tor of 5 to 10 [21]. With out logic, we only write proof for bytecode
programs rather than write proof for the corresponding assembly
codes directly. So the workload will be greatly reduced by a factor
of 5 to 10. That will be a significant improvement for fully certified
subroutines with machine checkable proofs.

Extensions and Future Work. An important and useful extension
is object-oriented features such as objects, references, methods, and
inheritance. Extension of the program logic to support exception
handling is straightforward but interesting, following the similar
idea of function call/return. Reasoning about exceptions is not
much different from reasoning about functions. First, there is an
action of setting an exception handler. It is similar to function call,
as the code must save all the information necessary to resume
execution from that point. Raising an exception is similar to a
return, except that this return does not just go to the previous
function, but rather to the closest exception handler.

In CBP logic system, we support most of the complex stack-
based control abstractions and unstructured control flow. But, we
do not support concurrency yet. Concurrency is one of the hot
topics, still far away from satisfaction. There are a number of subtle
problems even in the well-used bytecode programs such as JDK
synchronized classes [18]. It is actually an easy task to extend the
machine to support concurrency. But it is not so easy to define a
simple logic system to certify concurrent bytecode programs. We
will try it in the near future.

4. Related Work and Conclusion

Logic for Bytecode. Although the interest in specification and
certification of bytecode applications is relatively recent concerns,
much works have been done in this field. Bytecode Modeling Lan-
guage (BML) [5] focuses on writing understandable specifications
for bytecode. It allows the application developer to specify the be-
haviour of an application in the form of annotations at the level of
the bytecode. In particular, JAVA source code specifications can be
compiled into BML specifications.

Some other efforts focus on the development of a sound proof
system. Developed a simple Hoare-like logic for bytecode pro-
grams within Isabelle, Quigley [15] has demonstrated that it is pos-
sible to define a programming logic for bytecode programs that
allows the proof of bytecode programs containing loops. Focus-
ing on the program logic for reasoning about program resource
consumption, MRG project [2] presents the resource-aware opera-
tional semantics of an abstract fragment of JVM Language (named
Grail), the program logic, and the proof. A program logic [3] which
combines Hoare triples for methods with instruction specifications
is presented for a JAVA-like bytecode language by Bannwart and
Müller. Their logic supports lots of object-oriented features such as
objects, references, methods, and inheritance. Benton [4] proposed
a typed, compositional logic for a stack-based abstract machine to
verify bytecode programs which are written in an imperative subset
of .NET CIL. He uses a higher-level abstract machine with separate
data stack and control stack; the latter cannot be touched by regular
instructions exceptcall andret.

Reasoning about Control Stacks.Reasoning about control stacks
is extremely difficult for mid-level and low-level code programs
due to the flat nature.

STAL [13] and its variations [20] can also type-check func-
tion call/return and stack unwinding, but they all treat return code
pointers as first-class code pointers and stacks as “closures”. Us-
ing compound stacks, STAL can type-check exceptions and weak-
continuations, but this approach is rather limited. If multiple excep-
tion handlers defined at different depths of the stack are passed to
the callee, the callee has to specify their order on the stack, which
breaks modularity.

Tan and Appel [19] use the implicit finite unions structure
to study the low-level language. As a result, they arrived at
continuation-style Hoare logic explainable by indexed model, with
a rather convoluted interpretation of Hoare triples involving ex-
plicit fixpoint approximations. Saabas and Uustalu [17] introduced
a compositional natural semantics and Hoare logic based on the im-
plicit finite unions structure for a simple low-level language with
expressions. They applied their logic to a stack-based language
with basic stack operation like “push”. Ni and Shao’s work [14]
combines the syntactic approach used in type systems with logic
systems to support code pointer specification. They introduce a syn-
tactic constructcptr to describe the embedded code pointer, which
is interpreted in the meta-logic at a lower level to avoid circularity.

Fengetc. [10] proposed SCAP to modularly certify assembly
code with stack-based control abstractions. Instead of treating the

6 2009/6/3

return code pointers as first class code pointers, SCAP follows the
producer/consumer model to reason about stack-based control ab-
stractions,e.g.,function call/return, exceptions and thread context
switch routines. In addition, SCAP does not enforce any specific
stack layout, therefore it can be used to support sequential stacks,
linked stacks, and heap-allocated activation records.

Sharing the same producer/consumer model, this paper applies
the FPCC concept bytecode programs. We build a Hoare-like logic
system to certify bytecode programs which run on verified virtual
machine. As the examples shown, program with complex control
stack operations be certified within our logic.

Conclusion. This paper presents a logic framework to verify
bytecode programs. This paper defines a Hoare-style logic for mod-
ularly specifying and certifying bytecode programs with complex
stack-based control abstractions and unstructured control flow. Our
bytecode language is similar to JAVA bytecode and CIL.

To certify a bytecode program, a programmer’s task is only re-
quired to find the specification and establish the well-formedness of
individual module. This logic system is fully mechanized: the com-
plete soundness proof and a full verification of several examples are
carried out in the Coq proof assistant [7].

Our work provides a foundation for reasoning about bytecode
programs for stack-based virtual machine and makes a solid ad-
vance toward building a proof-transforming compilation environ-
ment. We believe this work may serve as a solid theoretical founda-
tion to understand and reason about the popular and complex web
applications which runs on stack-based virtual machine.

Acknowledgments

Acknowledgments

The authors thank Prof. Zhong Shao of Yale, Dr. Xinyu Feng of
TTI-Chicago, Dr. Gang Tan of Lehigh University, and Dr. Juan
Chen of Microsoft for useful discussions about FPCC. Yingying
Sun helped prove a early version of logic framework. Yuan Dong,
Shengyuan Wang, Liwei Zhang and Yunmin Zhu are supported
in part by National Natural Science Foundation of China (under
grant No. 60573017 and No. 90816006), Hi-Tech Research And
Development Program of China (under grant No. 2008AA01Z102),
and Basic Research Foundation of Tsinghua National Laboratory
for Information Science and Technology (TNList). Any opinions,
findings, and contributions contained in this document are those of
the authors and do not reflect the views of these agencies.

References
[1] A. W. Appel. Foundational proof-carrying code. InProc. 16th IEEE

Symposium on Logic in Computer Science, pages 247–258. IEEE
Computer Society, June 2001.

[2] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano.
A program logic for resource verification. InTPHOLs’04. Springer-
Verlag, 2004.

[3] F. Bannwart and P. M̈uller. A program logic for bytecode.
In Proceedings of Bytecode05, Electronic Notes in Theoretical
Computer Science, pages 255–273. Elsevier, 2005.

[4] N. Benton. A typed, compositional logic for a stack-basedabstract
machine. InIn Proc. 3rd Asian Symposium on Programming
Languages and Systems (APLAS), volume 3780 ofLNCS, pages
364–380. Springer-Verlag, 2005.

[5] L. Burdy and M. Pavlova. Java bytecode specification and
verification. InProceedings of SAC06. ACM Press, 2006.

[6] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline. A
certifying compiler for Java. InProc. 2000 ACM Conf. on Prog.
Lang. Design and Impl., pages 95–107, New York, 2000. ACM Press.

[7] Coq Development Team. The Coq proof assistant reference manual.
The Coq release v8.1, 2006.

[8] ECMA. Standard ECMA-335 Common Language Infrastructure.
2006.

[9] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. InProg. Lang.
Design and Impl. (PLDI’08), pages 170–182, New York, NY, USA,
June 2008. ACM Press.

[10] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular
verification of assembly code with stack-based control abstractions.
In Prog. Lang. Design and Impl. (PLDI’06), pages 401–414, New
York, NY, USA, June 2006. ACM Press.

[11] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 26(1):53–56, Oct. 1969.

[12] T. Lindholm and F. Yellin. The java virtual machine specification
(second edition), 1999.

[13] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed
assembly language. InProc. 1998 Int’l Workshop on Types in
Compilation: LNCS Vol 1473, pages 28–52. Springer-Verlag, 1998.

[14] Z. Ni and Z. Shao. Certified assembly programming with embedded
code pointers. InPOPL’06, pages 320–333, 2006.

[15] C. L. Quigley. A programming logic for java bytecode programs. In
Proc. of 16th Int. Conf. on Theorem Proving in Higher-Order Logics,
TPHOLs 2003, pages 41–54. Springer-Verlag, 2003.

[16] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. InProc. 17th Annual IEEE Symp. on Logic in Comp. Sci.
(LICS’02), pages 55–74. IEEE Computer Society, July 2002.

[17] A. Saabas and T. Uustalu. Compositional type systems for stack-
based low-level languages. InProc. of 12th Computing, Australasian
Theory Symp., (CATS 2006), pages 27–39. Australian, 2006.

[18] K. Sen. Race directed randomized dynamic analysis of concurrent
programs. InProc. 2008 ACM Conf. on Prog. Lang. Design and
Impl., pages 11–21. ACM Press, June 2008.

[19] G. Tan and A. W. Appel. A compositional logic for control flow. In
VMCAI’06, volume 3855 ofLNCS, pages 80–94. Springer, 2006.

[20] J. C. Vanderwaart and K. Crary. A typed interface for garbage
collection. InTypes in Lang. Design and Impl. (TLDI’03), pages
109–122, 2003.

[21] M. Weiss, F. de Ferrire, B. Delsart, C. Fabre, F. Hirsch,E. A. Johnson,
V. Joloboff, F. Roy, F. Siebert, and X. Spengler. Turboj, a java
bytecode-to-native compiler. InProc. LCTES98, volume 1474 of
LNCS, pages 119–130. Springer-Verlag, 1998.

7 2009/6/3

