
Modular Certification of
Low-level Intermediate Representation Programs

Yuan Dong∗, Shengyuan Wang∗, Liwei Zhang† and Ping Yang‡
∗Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

†School of Software, Tsinghua University, Beijing 100084, China
‡College of Information Science Beijing Language and Culture University, Beijing 100083, China

Email: {dongyuan,wwssyy}@tsinghua.edu.cn, zhanglw06@mails.tsinghua.edu.cn, yangp@blcu.edu.cn

Abstract—Modular certification of low-level intermediate
representation (IR) programs is one of the key steps of
proof-transforming compilation. The major challenges are
the complexity of abstract control stacks and the lack of
control flow information due to their flat nature. To tackle
these challenges, we present in this paper a novel Hoare-style
logic framework for modular certification of p-machine style
bytecode as IR programs. This logic can fully support abstract
control stacks and unstructured control flows for modular
certification of IR programs involving while loops, procedure
call/return, recursive procedures, and even nested procedures.
It applies Foundational Proof-Carrying Code (FPCC) concepts
to IR level. This system is expressive and fully mechanized. We
prove its soundness and demonstrate its power by certifying
the implementation of some IR programs in the Coq proof
assistant. This work not only provides a solid theoretical
foundation for reasoning about IR programs, but also makes
an important advance toward building proof-transforming
compilation environment in which certified IR code with proofs
can be compiled to machine checkable proof-carrying low-level
assembly code.

Keywords-proof-carrying code; modular certification; nested
procedure; intermediate representation program;

I. I NTRODUCTION

Proof-transforming compilation transforms a proof of a
high-level program into a proof of its low-level compiled
form as the program is being compiled it is a feasible
approach to build large scale trustworthy program. Although
lots of program logic for high-level language have been
proposed in last forty years [1], [2], the proved properties
cannot be preserved during traditional compilation. Machine
level programs can be certified with proper logic systems
[3], [4], [5]. However, the code of any non-trivial programs
of these logic are really tedious to carry out by hand.

Modular certification of intermediate representation (IR)
programs is the key of proof-transforming compilation. As a
well defined IR, bytecode for stack-based machine is suitable
to serve as a mid-level language for a proof-transforming
compiler. A subset of Niklaus Wirth’s p-machine style
bytecode (P-Code) [6] is used in this paper.

To handle modern language with nested procedure like
Pascal, GNU C extension and FORTRAN-90, our IR sup-
ports nested procedure. This interesting feature makes our

-{(p2, g2)} ;callee, procedure fact
2 int 4 ;stack frame 15 cal 1 2 ;call fact
3 lod 1 5 ;load n -{(p16, g16)}
4 lit 0 ;load imm 0 16 ret ;fact return
5 opr 9 ;n#0? ;main caller
6 jpc 16 ;loop judge -{(p17, g17)}
7 lod 1 4 ;load r 17 int 6 ;stack frame
8 lod 1 5 ;load n 18 lit 1 ;load imm 1
9 opr 4 ;r*n 19 sto 0 4 ;r=1
10 sto 1 4 ;save r 20 lit 5 ;load imm 5
11 lod 1 5 ;load n 21 sto 0 5 ;n=5
12 lit 1 ;load imm 1 22 cal 0 2 ;call fact
13 opr 3 ;n-1 -{(p23, g23)}
14 sto 1 5 ;save n 23 ret ;main return

Figure 1. Nested Procedure Example

IR language elegant and expressive. But the stack access
becomes far more complicated. Our P-code machine has
a single stack mixing both data and return addresses. So
data store instructions can overwrite return addresses and
thus mess with control-stack invariants. Almost all the
instructions can access the stack, while p-code machine has
no stack protection mechanics. Correct implementation of
these constructs is of utmost importance to the safety and
reliability of any IR programs.

A complex IR program which involves recursive nested
procedure is shown in Figure 1. Let’s omit the contents in
the shadow box. It is compiled from the Pascal like code in
Figure 2. During calling functionfact, instructioncal 0 2

on label22 saves its return pointer on stack, then updates
stack frame and stack pointer, and jumps to functionfact

on label2. Whenfact returns, the control jumps back to
label 23, wherefact restores return pointer, stack frame
and stack pointers, then jumps back to its caller’s code.

To certify a program like this, the major challenge is to
formalize and capture the invariant of the nested procedure
stack access of callee. Although there have been some
efforts [7], [8], [9] on building logic systems for bytecode
programs, none of them can verify this program because of
the lack of nested procedure control stack support.

Our Contributions. This paper presents a Hoare-style
logic framework NCBP (Certifying Bytecode Programs
with Nested Procedures) for modular certification of IR

1 var r, n; |11 begin
2 procedure fact; |12 r:=1;
3 begin |13 n:=5;
4 if n#0 then |14 call fact;
5 begin |15 end.
6 r := r*n;
7 n := n-1;
8 call fact;
9 end;
10 end;

Figure 2. Source Code of Nested Procedure

programs with all kinds of stack-based control abstractions
including while loops, procedure call/return, recursive pro-
cedures, and even nested procedures. Our logic support
modular certification so the callee can be certified without
knowing where it will return. This logic applies Foundational
Proof-Carrying Code (FPCC) concepts to IR programs. We
give the complete soundness proof and a full certification of
several examples in the Coq proof assistant [10].

This work not only provides a foundation for reasoning
about IR programs for stack-based machine, but also makes
an important step toward proof-transforming compilation.
This paper makes the following contributions:

• As far as we know, our work presents the first program
logic facility for certifying the partial correctness of IR
programs involving complex stack operations such as
non-local access of recursive nested procedure.

• Using the “producer/consumer” model, we formalize
the invariant of the stack-based procedure call/return
control abstraction in a general way to describe caller’s
state transition from function call point to the return
point. As an important advantage, it can be used
as a general framework for other kinds of function
call/return with proper instances of calling convention.

• To our best knowledge, our logic framework is also
the first to apply FPCC concepts which is powerful for
machine code certification to a common IR language.
Our experience demonstrates that it should be feasible
to build a pervasive Hoare-like logic framework for
proof-transforming compilation from IR to machine
code.

The rest of this paper is organized as follows: we first for-
malize a stack-based virtual machine and give its operational
semantics (Sec II). Then we present a generic Hoare-style
logic framework NCBP system for certifying recursive
nested procedure and show how to certify IR programs in
the framework (Sec III and IV). Finally we discuss the
implementation with Coq proof assistant tools and related
research work, and then draw a conclusion.

II. FORMAL DEFINITION OF THE ABSTRACT MACHINE

We use P-machine style bytecode intermediate represen-
tation to show the capability of our method. P-code is a
popular facility for language implementation and compiler
construction. It runs on a stack-based abstract machine,
PCM (P-Code Machine).

Figure 3. Stack and Display of PCM

Our IR supports nested procedures, so the stack access
becomes far more complicated. An efficient method using an
auxiliary display array is adapted in our machine to handle
non-local and cross-procedure access.

A. Stack and Display for Nested Procedure

In Figure 2, the only function at nesting depth 0 is
the outermost procedure,main. Within main, we declare
proceduresfact at nesting depth 1 which does factorial
computation. The code suggests that the outer procedure
calls fact and fact accesses itself recursively.

PCM has 3 registers — a program counterpc, which
points at the current instruction in the code heap, a base
registerrb, which marks the beginning of the active stack
frame, and a top-of-stack register (or stack pointer)rt which
points to the top of the stack. To simplify the presentation,
we useb and t to represent values contained in the register
rb and rt.

Stack Frame.PCM has only one shared stack which
provides access links and return address, local variables,and
the arguments to local instructions. Stack frames is shown
in Figure 3(a). There are four elements in a stack frame: a
saved display for current nesting depthsd[nd], a dynamic
link dl which points to the frame base of caller procedure,
a return addressra, and current nesting depthnd.

The procedure call is issued with instructioncal l f

where l specifies the difference in nesting depths andf

points to the target address. It works as follows: First, this
instruction reserves the first four cells of the above stack
frame, and sets current nesting depthnd, saved displaysd,
dynamic link dl, then saves the return address aspc + 1.
Then, it sets registerrb to current stack frame base. After
that, it updates current displayD[nd] to current stack frame
baseb. Finally it jumps to the callee procedure’s addressf.

A procedure always begins with the instructionlit w to
set registerrt to t + w. Sow essentially specifies the space
reserved for locals (the number of parameters plus 4). When
procedure returns, the instructionret restores current saved
display D[nd] from stack frame toD, recovers its return
address and stack pointer, then jumps back to the caller’s
code.

Display. Display consists of one pointer for each nesting
depth. At all times,D[i] points to the highest activation
record on the stack for any procedure at nesting depthi.

(World) W ::= (C, S, pc)

(Code) C ::= {f ; I}∗

(State) S ::= (K, D, R)

(Stack) K ::= {k ; w}∗

(Display) D ::= {k ; w}∗

(RegFile) R ::= {r ; w}∗

(Labels) f, k ::= n(nat)
(Word) w ::= i(int)

(Register) r ::= rb | rt
(OprNum) m ::= {1 . . . 13}

(Instr) ι ::= int w | lit w | lod l k | sto l k |
opr m | jpc f | cal l f

(Commd) c ::= ι | ret | jmp f

(InstrSeqs) I ::= ι; I | ret | jmp f

Figure 4. Definition of An IR Machine

C[f] ,

{

c c = C(f) andc = jmp f′, or ret
ι; I ι = C(f) and I = C[f+1]

(F{a ; b})(x) ,

{

b if x = a

F (x) otherwise.

Figure 5. Definition of Representations

In Figure 3(c), we see the displayD, with D[0] holding a
pointer to the activation record formain, the highest (and
only) activation record for a function at nesting depth 0.
Also, D[1] holds a pointer to the activation record forfact ,
the highest record at depth 1. From the saved display value
in the stack frame of procedurefact , we also can keep track
of all the former highest display records at nesting depth 1.

B. Machine Specialization

In Figure 4, we show our machine in a formal way. The
whole machine configuration is called a “World” (W), which
consists of a read-only code heap (C), an updatable state (S),
and an program counter (pc). The code heap is a finite partial
mapping from code labels (f) to instruction sequences (I).
The stateS contains a stack (K), a stack frame display (D)
and a register file (R). The program counterpc points to
the current command inC. We also define the instruction
sequenceI as a basic code block,i.e., a list of sequential
instructions ending with jump or return commands.

We use the dot notation to represent a component in a
tuple, e.g.,S.K means the stack in stateS. More represen-
tations are defined in Figure 5.C[f] extracts an instruction
sequence starting fromf in C. RepresentationF{a ; b} is
function updating, and that F is any function.

It should be noticed that, in addition to normal push and
pop operations, the instructions such as “lod” and “sto”
could do random access to the stack, So the stackK is
modeled as a partial mapping instead of a list. Some register
and stack related notations are defined in Figure 6.

C. Operational Semantics

In Figure 7, we also define the operational semantics
of each instruction in terms of the machine configuration
transitions. The relationNextS(c,pc) shows the transition

t , R(rt) b , R(rb) sd , K(b)

dl , K(b + 1) ra , K(b + 2) nd , K(b + 3)

Figure 6. Representations for Register/Stack

NextSc,pc S S
′ whereS = (K, D, R)

if c = thenS
′ =

int w (K, D, R{rt ; t + w}
lit w (K{t;w}, D, R{rt ; t + 1}
lod l w (K{t;K(D(nd − l) + w)}, D, R{rt ; t + 1}
sto l w (K{(D(nd − l) + w);K(t − 1)}, D, R{rt ; t − 1}
opr 3 (K{(t − 2);K(t − 2)) − K(t − 1)}, D, R{rt ; t − 1}) (-)
opr 4 (K{(t − 2);K(t − 2) ∗ K(t − 1)}, D, R{rt ; t − 1}) (*)
opr 9 (K{(t − 2);0}, D, R{rt ; t − 1}), if (K(t − 2) 6= K(t − 1))

(K{(t − 2);1}, D, R{rt ; t − 1}), else. (neq)
jpc f (K, D, R{rt ;(t − 1)})
cal l f (K{t;D(nd − l + 1), (t + 1);b,

(t + 2);(pc + 1), (t + 3);(nd − l + 1)},
D{(nd − l + 1); t}, R{rb ; t})

ret (K, D{nd;K(b))}, R{rt ;b, rb ;dl})
jmp f (K, D, R)

NextPC(c,S) pc pc′ whereS = (K, D, R)
if c = thenpc′ =

jpc f f if K(t) = 0; pc + 1 others
cal l f f

ret K(b + 2)
jmp f f

. . . pc+1
c = C(pc) NextS(c,pc) S S

′ NextPC(c,S) pc pc′

(C, S, pc) 7−→ (C, S′, pc′)
(PC)

Figure 7. operational semantics ofPCM

of states by executingc with program counterpc; while
NextPC(c,S) shows howpc changes afterc is executed with
K, D andR.

The instruction set captures the most basic and common
PCM , which is similar to JAVA bytecode or .NET CIL.
Semantics of most instructions are straightforward.

The execution of programs is modeled as a small-step
transition from one world to another.W 7−→ W

′ is made by
executing the instruction pointed to byW.pc.

III. T HE PROGRAM LOGIC FORPCM

NCBP , our new program logic for certifying IR pro-
grams, follows the invariant-based proof technique: we de-
fine a program invariant stronger than the safety property
we are interested in. The program invariant guarantees that
the program can execute one step, while the instruction rules
guarantee that the invariant still holds in the new program
state. In this way, we know the program will never get stuck
unless hardware problem.

A. Specification Language

To specify a program with a code heapC, the programmer
should insert specifications at the start points of instruction
sequences. We use the mechanizedmeta-logic which is
implemented in the Coq proof assistant as our specification
language. This logic corresponds to a higher-order predicate
logic with inductive definitions. As shown in Figure 8, the
specifications is a pair(p, g). The assertionp is a predicate
over program stateS, while guaranteeg is a predicate over
two program states. As we can see, theNextS(c,pc) relation
defined in Figure 7 is a special form ofg which is over the

(Pred) p ∈ State→ Prop
(Guarantee) g ∈ State→ State→ Prop

(Spec) s ::= (p, g)
(CdHpSpec) Ψ ::= {(f1, s1), . . . , (fn, sn)}

(KPred) k ∈ Stack→ Prop

Figure 8. Specification Constructs forNCBP

two adjacent states. We usep to specify the pre-condition
over state, and useg to specify the behavior from the
specified program point tocurrent function return point.

SpecificationΨ for code heapC associates code labels
f with correspondings. Multiple s may be associated with
the samef, just as a function may have multiple specified
interfaces. We use the predicatek to specify the stack. To
enforce the stack partition between different functions, we
encode Separation Logic connectors in our specification lan-
guage (which is also our meta-logic). We also use standard
separation logic primitives [11] as assertion operators.

B. Inference Rules

The inference rules are defined as following judgments:
Ψ ⊢ {s}W (well-formed world)
Ψ ⊢ C :Ψ′ (well-formed code heap)
Ψ ⊢ {s} I (well-formed instruction sequence)

The program logic inference rules are shown in Figure 9.
Program Invariants.TheWLD rule formulates the program

invariant enforced by our program logic:
• The code heapC is well-formed following theCDHP

rule.
• The imported interfaceΨ is a subset of the exported

interface Ψ′, thereforeC is self-contained and each
imported specification has been certified.

• Currentpc has a specifications in Ψ, thus the current
instruction sequenceC[pc] is well-formed withs.

• Given the exportedΨ′, current stateS satisfies thes.
Code Heap Modules.Our logic supportsseparate certi-

fication of the program modules. Modules are small code
heaps which contain at least one code block. The spec-
ification of a module contains specifications of both the
code blocks in the current module and the external code
blocks in the callee’s module. In theCDHP rule, Ψ contains
specifications for external code (called by local module
C), while Ψ′ contains specifications for code blocks in the
moduleC for other modules. The well-formedness of each
individual module is given via theCDHP rule. All non-
intersecting well-formed modules can be linked via theLINK

rule into a well-formed global code heap.
Sequential Instructions.Like traditional Hoare-logic [12],

our logic also uses the pre- and post-condition as spec-
ifications for programs. TheSEQ rule is a schema for
instruction sequences starting with an instructionι (ι cannot
be conditional jump or function call instructions). It saysit
is safe to execute the instruction sequenceI starting with
ι at the code labelpc, given the imported interface inΨ
and a pre-condition(p, g). An intermediate specification
(p′′, g′′) with respect to which serves as the post-condition

Ψ ⊢{s}W (Well-formed World)

Ψ ⊢ C :Ψ′ Ψ ⊆ Ψ′ Ψ ⊢{s} pc : C[pc] {s} Ψ′
S

Ψ ⊢{s} (C, S, pc)
(WLD)

Ψ ⊢ C :Ψ′ (Well-formed Code Heap)
for all (f, s) ∈ Ψ′ : Ψ ⊢{s} f : C[f]

Ψ ⊢ C :Ψ′
(CDHP)

Ψ1 ⊢ C1 :Ψ′

1 Ψ2 ⊢ C2 :Ψ′

2 C1#C2

Ψ1 ∪ Ψ2 ⊢ C1 ∪ C2 :Ψ′

1 ∪ Ψ′

2

(LINK)

Ψ ⊢{s} I (Well-formed Instr. Sequence)
ι 6∈ {jpc, cal} Ψ ⊢{(p′′, g′′)} pc+1 : I

p ⇒ gι (p ⊲ gι) ⇒ p′′ (p ◦ (gι ◦ g′′)) ⇒ g

Ψ ⊢{(p, g)} pc : ι; I
(SEQ)

(f′, (p′, g′)) ∈ Ψ Ψ ⊢{(p′′, g′′)} pc+1 : I

(p ⊲ gjpcT) ⇒ p′ (p ◦ (gjpcT ◦ g′)) ⇒ g
(p ⊲ gjpcF) ⇒ p′′ (p ◦ (gjpcF ◦ g′′)) ⇒ g

Ψ ⊢{(p, g)} pc : jpc f′; I
(JPC)

(pc+1, (p′′, g′′)) ∈ Ψ Ψ ⊢{(p′′, g′′)} pc+1 : I

(p ⊲ gcal) ⇒ p′ (p ⊲ gfun) ⇒ p′′ (p ◦ (gfun ◦ g′′)) ⇒ g

(f′, (p′, g′)) ∈ Ψ gfun = ((gcal ◦ g′) ◦ gret)

Ψ ⊢{(p, g)} pc : cal l f′; I
(CAL)(p ◦ gret) ⇒ g

Ψ ⊢{(p, g)} pc : ret
(RET)

(f′, (p′, g′)) ∈ Ψ (p ⊲ gjmp) ⇒ p′ (p ◦ (gjmp ◦ g′)) ⇒ g

Ψ ⊢{(p, g)} pc : jmp f′

(JMP)
Figure 9. NCBP Inference Rules

p ⇒ g , ∀S.pS → ∃S
′, gSS

′; p ⊲ g , λS.∃S0, pS0 ∧ gS0S

p ⇒ p′ , ∀S.pS → p′
S; g ◦ g′ , λS, S′′.∃S

′, gSS
′ ∧ g′

S
′
S
′′

g ⇒ g′ , ∀S, S′.gSS
′ → g′

SS
′; p ◦ g , λS, S′.pS ∧ gSS

′

Figure 10. Connectors forp andg

for the current instructionι should be found. At the same
time, the remaining instruction sequence is well-formed with
intermediate specification(p′′, g′′);

We usegι to represent the state transition made by the
instruction ι, which is defined in Figure 11 and Figure 7.
SinceNextS does not depend on the current program counter
for these instructions “” is used to represent arbitrarypc.

The rules use the definitions in Figure 10. The predicate
p ⊲ gι specifies the state resulting from the state transition
gι, knowing the initial state satisfiesp. It is the strongest
post condition aftergι. The composition of two transitions
g andg′ is represented asg ◦g′, andp◦g refinesg with the
knowledge that the initial state satisfiesp.

The first premisep ⇒ gι in the inference ruleSEQ means
that the state transitiongι would not get stuck as long as
the starting state satisfiesp. The second one means if the
current state satisfiesp, after state transitiongι, the new state
satisfiesp′. The last one requires the composition ofgι and
g′′ fulfilling g, knowing the current state satisfiesp.

gjpcT , λS, S′.NextS(jpc,) S S
′ (whereS.K(rt) = 0)

gjpcF , λS, S′.NextS(jpc,) S S
′ (whereS.K(rt) 6= 0)

gc , λS, S′.NextS(c,) S S
′ (for all otherc)

Figure 11. Local State Transitions

Function Call and Return.Figure 12(a) illustrates the
meaning of the specification(p, g) for the procedurefoo.
A pre-condition for an instruction sequence contains a
predicatep specifying the current state, and aguaranteeg

describing the relation between the current state and the state
at the return point of the current procedure. The guarantee
g may cover multiple instruction sequences.

Figure 12(b) shows a procedure call tobar (point B) from
foo at point A (label pc = 5), with the return address
pc + 1 (point D). The specification ofbar is (pB , gB).
Specifications atA andD are(pA, gA) and(pD, gD), where
gA governs the code segmentA-E andgD governsD-E.

To prove the well-formedness of program calling behav-
ior, the following conditions should be satisfied:

• the state should satisfy the pre-condition of calleebar,

∀S, ∃S
′

.pA S ∧ gcal S S
′ → pB S

′;
• after bar returns,foo resumes fromD,

∀S, S′′, S′, S∗.pA S

→ gcalSS
′ → gBS

′
S
∗ → gretS

∗
S
′′ → pD S

′′;
• the specification inbar for A-E should be satisfied,

∀S, S′′, S′′′, S′, S∗.pA S → gcal S S
′

→ gB S
′
S
∗ → gret S

∗
S
′′ → gD S

′′
S
′′′ → g S S

′′′;
Then we can define guaranteegfunfor callee
gfun , λS, S

′′

.∃S
′

, ∃S
∗

, gcal S S
′ ∧ gB S

′

S
∗ ∧ gret S

∗

S
′′

.

Thus, we can rewrite last two premises as:
∀S, S

′′

.pA S → gfun S S
′′ → pD S

′′;
and

∀S, S
′′

, S
′′′

.pA S → gfun S S
′′ → gD S

′′

S
′′′ → g S S

′′′

.

One of the major contributions of our work is the for-
mulation of gfun for the callee procedure which hides the
complexity of the stack and display. Above conditions are
enforced by theCAL rule shown in Figure 9. It can be seen
that gfun describes the states transition from the function
call point to the return point. It should be noticed that we
do not require a particular return value but only require that
the stack contain a code pointer specified in localΨ at the
return stateS′′, which is provable based on the knowledge
of p andgfun.

TheRET rule simply requires that the function has finished
its guaranteed transition at this point. So a state transition
gret should satisfy the remaining behavior of the callee
function g. In this rule, we do not need to know any infor-
mation about the return address. So it can be used to support
modular certification of any callee function separately.

Stack Invariant.From the procedure call premises, the
“well-formed control stack with depthn” can be defined as:

WFST(0, g, S, Ψ) , ¬∃S
′. g S S

′

WFST(n, g, S, Ψ) , ∀S
′.g S S

′ → S
′.K(b + 2) ∈ dom(Ψ)

∧p′
S
′ ∧ WFST(n − 1, g′, S′, Ψ)

where(p′, g′) = Ψ(S′.K(b + 2)).
When the stack has depth0, we are in the outermost

function which has no return code pointer. Thus, there exist
no S

′ at which the function can return.
The stack invariant is defined as that, at each program

point with specification(p, g), the program stateS must
satisfyp and there exists a well-formed control stack inS:

{(p, g)} Ψ′

S , p S ∧ ∃n.WFST(n, g, S, Ψ).

(a) (b)
Figure 12. NCBP Procedure Call/Return Model

The actual depth of the control stack is not considered
in this definition. We do not specify the other features
of the stack in the invariant, which makes our logic very
general and flexible to use. As long as properly specified,
the callee can update any other parts of the stack. The
programmer should prove that this invariant holds at every
step of program execution.

Other Instructions.The execution ofjpc may either fall
through or jump to the target code label, depending on
whether the condition holds. So in theJPC rule, we use
gjpcT and gjpcF to represent identity transitions with extra
knowledge about the stackK. We also need to know that
p contains the ownership of the target stack cell. A direct
jump is safe (ruleJMP) if the current assertion can imply the
assertion of the target code label as specified inΨ. It should
be viewed as a specialization ofJPC.

Soundness ofNCBP . Based on the progress and preser-
vation lemmas, the soundness ofNCBP guarantees that
the complete system never gets stuck as long as the initial
state satisfies the program invariant that is defined by the
WLD rule. Furthermore, the invariant will be always held
during execution, from which we can derive rich properties
of programs. The soundness of the program logic is proved
following the syntactic approach in Coq proof assistant [13].

Lemma 3.1 (Progress)If Ψ ⊢{s}W, then there exists
W

′, such thatW 7−→ W
′.

Lemma 3.2 (Preservation)If Ψ ⊢{s}W, andW 7−→ W
′,

then there existss′, Ψ ⊢{s′}W′.
Theorem 3.3 (Soundness ofNCBP) If Ψ ⊢{s}W, then

for all natural numbern, there exists a programW′ such
that W 7−→n

W
′.

IV. RECURSIVENESTEDPROCEDUREEXAMPLES

In this section we certify a recursive nested factorial
procedure implemented in IR to show howNCBP can be
used to support non-local and cross procedure access.

A. Callee of Recursive Procedure

Get Instruction Sequences.The source code and the IR
program with its specifications forPCM are shown in
Figure 1 (Section I).

True , λS.True
validK(sp,n) , ∀l ∈ {0 . . . n}.K(sp+ l)7→

NoG , λS.λS
′.False

Did , ∀l ∈ {0 . . . nd}.D(l) = D
′(l)

Kid(ls) , ∀l ∈ {D(0) . . .ls− 1}.K(l) = K
′(l)

Frmid(ls,ls′) , ∀l ∈ {0 . . . 3}.K(ls+ l) = K
′(ls′ + l)

Rid , R(rb) = R
′(rb) ∧ R(rt) = R

′(rt)

Figure 13. Specification Macros forNCBP

p2 , validK(b, 1 + 4 ∗ (K(bc + 5) + 1)) ∧ (t = b)
∧(K(bc + 4) >= 1) ∧ (K(bc + 5) ∈ {0 . . . 5})

g2 , (t = t′ − 4) ∧ (b = b′) ∧ Frmid(b, b) ∧ Did ∧ Kid(bc)
∧Frmid(bc, bc) ∧ (K′(bc + 4) = K(bc + 4) ∗ (K(bc + 5))!)

p16 , validK(b, 1 + 4 ∗ (K(bc + 5) + 1)) ∧ (t = b + 4)
∧(K(bc + 4) = 5!) ∧ (K(bc + 5) = 0)

g16 , Rid ∧ Frmid(b, b) ∧ Did ∧ Kid(bc) ∧ Frmid(bc, bc)
∧(K′(bc + 4) = K(bc + 4) ∗ (K(bc + 5))!)

wherebc , D(nd − 1), is the stack base point of caller.
Figure 14. Specifications of Callee

Finding the instruction sequence is the first step to certify
a program. From the definition in Figure 4, we know that
an instruction sequence is a set of instructions ending with
unconditional jumpjmp or function returnret. Thus, it can
be seen that there are two instruction sequences in callee
program. Instructions with label from 2 to 15 form the first
sequence. The second one is formed by the return instruction
with label 16.

Write Specification for Instruction Sequences.Then the
programmer needs to give the specificationΨ of the code
heap, which is a finite mapping from code labelsf to code
specificationss which is a pair(p, g).

NCBP specifications for the code heap are embedded
in the code, enclosed by-{} in shadow box, see Figure 1
(Section I). Figure 13 shows definitions of macros used
in the code specifications.validK(sp,n) means that the
n + 1 stack cells those with addresses fromsp to sp + n

are valid and can be used in current function.Did means
all the accessible display elements inS are not changed.
Kid(ls) means all the stack cells from the bottom of
outermost procedure tols in S and S

′ are totally equal.
Frmid(ls,ls′) means the stack frame cells those with
addresses fromls to ls+3 are equal to those fromls′ to
ls′ + 3 respectively.Rid means all the registersexceptpc

in S are preserved.
Following the inference rules, the code specifications

should be given for these points: the head of an instruction
sequence, the target labels of function call instructioncal

and jump instructions (jmp andjpc), and the function call
return address which is just after call instructioncal.

Figure 14 shows the specifications of this example. To
simplify our presentation, we present the predicatep in
the form of a proposition with free variables referring to
components of the stateS. Also, we usek as shorthand for
the propositionk K when there is no confusion.

The specification of this procedure is given as(p2, g2).

p17 , validK(b, 7 + 4 ∗ 6) ∧ (t = b)

g17 , Kid(b) ∧ Frmid(b, b′) ∧ Did ∧ (t = t′ − 6) ∧ (b = b′)

p23 , validK(b, 7 + 4 ∗ 5) ∧ (t = b + 6) ∧ (K(b + 4) = 5!)
∧(K(b + 5) = 0)

g23 , Kid(b) ∧ Frmid(b, b′) ∧ Did ∧ Rid
p2 , ? g2 , ?

Figure 15. Specifications of Caller

From p2, we know that the values ofrt and rb are equal,
there is enough stack space for this recursive procedure to
run, and the values of variablesr and n which stored in
caller’s stack are inside the proper scope. The guaranteeg2

specifies the behavior of the function:
• only the caller stack and local stack are updated;
• the stack frames of caller and callee are not updated;
• the display is not updated;
• the registerrb is not updated whilet = t′ − 4 which

reserves stack cells for local stack frame; and,
• the non-local variablesr and n which are saved in

caller’s stack fulfill the loop invariant;
(p16, g16) is the specification of the rest of this procedure.

The pre-conditionp16 says that the relationship between the
values ofrt and rb is (t = b + 4), the stack space is still
available and, the results which store in caller’s stack must
be r = 5! andn = 0. The guaranteeg16 looks the same as
g2 except the relation about the value ofrt which reflects
the state transition of stack reserving instruction “lit04”.

Certify and Link Them Together.To check the well-
formedness of an instruction sequence beginning withι,
a programmer’s task includes applying the appropriate in-
ference rules and finding intermediate assertions such as
(p′, g′), which serves both as the post-condition forι and as
the pre-condition for the remaining instruction sequence.

After that, a programmer is also required to establish the
well-formedness of each individual module via theCDHP

rule. Two non-intersecting well-formed code heaps can then
be linked together via theLINK rule. TheWLD rule links all
code heaps into one single well-formed global one.

Support Modular Certification.All the code specifications
Ψ used inNCBP rules are thelocal specifications for the
current module. Thus,NCBP supports modular reasoning
about function call/return in the sense that caller and callee
can be in different modules and be certified separately.
When specifying the callee procedure, we do not need any
knowledge about the return address in its pre-condition.
The RET rule for the instruction “ret” does not have any
constraint on return value either.

B. Caller of Factorial Procedure

The caller and its specifications for the recursive nested
factorial example are shown in Figure 1 (Section I).
Figure 15 gives the specification definition of this example.

This procedure just initializes the variablesr andn, and
then calls procedurefact. The specification at the entry
point is (p17, g17). The pre-conditionp17 simply says that
the values ofrt and rb are equal and there is enough stack

space for this procedure to run. The guaranteeg17 specifies
the behavior of the caller procedure:

• the stack cells except the local stack are not updated;
• the callee stack frame is not updated;
• the display is not updated; and,
• the registerrb are not updated whilert = rt

′− 6 which
reserves cells for local stack frame and local variables.

The specification of the return point is(p23, g23). p23

means that there are still enough local stack space, the
relation between the values ofrt and rb is t = b + 6, and
local variablesr andn are5! and0. The guaranteeg23 also
specifies that the non-local stack, the local stack frame, the
display and the register file are all the same.

From theCAL rule, we know that(p2, g2), the specification
of the callee’s entry point should be added here to prove
caller procedure. The specification(p2, g2) in Figure 14 can
be used here. Furthermore, the specification of procedure’s
entry point defines function interface. Caller can use any
callees which share the same interface.

V. I MPLEMENTATION AND FURTHER EXTENSIONS

Implementation with Coq.The program logic presented
in this paper has been applied to IR programs for the
stack-based virtual machinePCM which supports nested
procedure non-local access with display.

We have formalizedPCM , its operational semantics, and
the program logic in the Coq proof assistant. The syntax
of the virtual machine is encoded in Coq using inductive
definitions. Operational semantics ofPCM and all the
inference rules ofNCBP are defined as inductive relations.
The soundness of the framework itself is formalized and
proved in Coq following the syntactic approach. The proof
is also formalized and implemented in Coq and is machine-
checkable. These examples are implemented directly in IR
and are hard to certify using other existing approaches. Man-
ually optimized IR code or code generated by optimizing
compilers can also be certified using our systems.

The implementation includes around 300 lines of Coq
encoding ofPCM including stack and display definition,
850 lines encoding ofPCM operational semantics, 230
lines encoding ofNCBP rules, and 950 lines of Coq tactics
for the soundness proof. We have written several hundred
lines of Coq tactics to certify practical examples, includ-
ing procedure call/return, and recursive nested procedure.
The implementation also includes more than 2300 lines of
reusable basic facilities, including lemmas and tactics for
partial mappings and Separation Logic assertions.

According to our experience, the size of the proof scripts,
in terms of the number of lines of Coq tactics, is huge
compared with the size of the IR code. However, as observed
by [14], the length of proof is probably a poor metric of
complexity because of the redundancy of the proof.

Extensions and Future Work.The most important work is
building a proof-transforming compiler based on our logic

Component Name Number of lines

Basic Utility Definitions & Lemmas 2,354
Machine Definition & Lemmas 275
Operational Semantics & Lemmas 854
NCBP-PCM Rules & Lemmas 223
NCBP-PCM & Soundness 966
PCM Stack Related Lemmas 2241
IR Examples Source Code 164
Callee Fact Spec. & Proof 1121
Caller Main Spec. & Proof 522

Total 8720

Figure 16. The Verified Package in Coq

to translate certified IR programs to assembly codes with
proofs. This idea is similar to Barthe’s certificate translation
compiler [15], but we use CiC, the underlying higher-order
logic in Coq, as our specification language. We plan to
develop a prototype compiler to translate our proof into the
proof for machine code.

Our logic system does not support concurrency yet. It
is actually an easy work to extend the machine to support
concurrency. But it is difficult to define a simple logic system
to modularly certify concurrent IR programs. We will try it
in the near future. Another important and useful extension is
the support of the object-oriented features such as objects,
references, methods, and inheritance.

VI. RELATED WORK AND CONCLUSION

Logic for Intermediate Representation and Bytecode.Pro-
gram logic for intermediate representation is the essen-
tial component of the certified compilers and the proof-
transforming compilers.

Appel and Blazy [16] designed a Separation Logic system
for Cminor, the IR of the certified CompCert compiler. The
Cminor programs that are proved in Separation Logic can
be compiled by the certified compiler.

Bytecode can be used as the IR of a modern compiler.
Bytecode Modeling Language (BML) [17] focuses on writ-
ing understandable specifications for bytecode. It allows
the application developer to specify the behaviour of an
application in the form of annotations at the level of the
bytecode. In particular, JAVA source code specifications can
be compiled into BML specifications.

Some others are focus on the development of the sound
proof system. Quigley [7] defined a programming logic for
bytecode programs within Isabelle that allows the proof
of bytecode programs containing loops. MRG project [18]
presented the resource-aware operational semantics of an
abstract fragment of JVM Language (named Grail), the
program logic, and the proof. Bannwart and Müller [9]
presented a program logic for a bytecode language similar to
Java bytecode and the .NET CIL that supports lots of object-
oriented features such as objects, methods, and inheritance.

Benton [8] proposed a typed, compositional logic for a stack-
based abstract machine to certify bytecode programs which
are written in an imperative subset of .NET CIL. But none
of these systems can be used to verify a program which
involves recursive nested procedure.

There have been some efforts [3], [4], [5] on building logic
system for low-level (assembly) programs. These results are
very useful for us to transform our IR code and the proof
into low-level codes and their proof.

Conclusion.This paper presents a Hoare-style framework
for modular specifying and certifying IR programs with
complex stack-based control abstractions and unstructured
control flow, including while loop, procedure call/return,
recursive procedure, and even nested procedure. This vir-
tual machine features nested procedure with variables from
external scopes via a display. For each control abstraction,
we have formalized its invariants and shown how to certify
its implementation. Using the producer/consumer model,
we studied the stack-based procedure call/return control
abstractions. In a natural and general way, we formalize it
as the general formula to describe caller’s state transition
from function call point to return point. It can be used as
a general framework for other machines and other calling
convention with proper instances of guaranteeg for call and
return instructions.

This logic system is fully mechanized in the Coq proof
assistant. It provides a foundation for reasoning about IR
programs for stack-based virtual machine and makes a solid
advance toward building a proof-transforming compilation
environment. We believe this work may serve as a solid
theoretical foundation to understand and reason about the
IR programs which run on stack-based virtual machine.

ACKNOWLEDGMENT

The authors thank anonymous referees for suggestions
and comments on an earlier version of this paper. We
also thank Prof. Zhong Shao of Yale, Dr. Xinyu Feng of
TTI-Chicago, Dr. Gang Tan of Lehigh University, and Dr.
Juan Chen of Microsoft for useful discussions about FPCC
and SCAP. Yingying Sun and Yunmin Zhu proved some
lemmas in our Coq implementation. This work is supported
in part by National Natural Science Foundation of China
(No. 60573017, No. 90818019 and No. 90816006) and Hi-
Tech Research and Development Program of China (No.
2008AA01Z102). Any opinions, findings, and contributions
contained in this document are those of the authors and do
not reflect the views of these agencies.

REFERENCES

[1] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline,
“A certifying compiler for Java,” inProc. PLDI’00. ACM
Press, 2000, pp. 95–107.

[2] D. von Oheimb, “Hoare logic for Java in Isabelle/HOL,”
Concurrency and Computation: Practice and Experience,
vol. 13, no. 13, pp. 1173–1214, 2001.

[3] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni, “Mod-
ular verification of assembly code with stack-based control
abstractions,” inProc. PLDI’06. ACM Press, 2006, pp. 401–
414.

[4] A. Saabas and T. Uustalu, “A compositional natural semantics
and hoare logic for low-level languages,” inIn: Proceedings
of the Second Workshop on Structured Operational Semantics.
Elsevier, 2005, pp. 151–168.

[5] G. Tan and A. W. Appel, “A compositional logic for control
flow,” in VMCAI’06, ser. LNCS, vol. 3855. Springer, 2006,
pp. 80–94.

[6] N. Wirth, Algorithms + Data Structures=Programs. Prentice
Hall, 1976.

[7] C. L. Quigley, “A programming logic for java bytecode
programs,” inProc. TPHOLs’03. Springer-Verlag, 2003, pp.
41–54.

[8] N. Benton, “A typed, compositional logic for a stack-based
abstract machine,” inProc. APLAS’05. Springer-Verlag,
2005, pp. 364–380.

[9] F. Bannwart and P. M̈uller, “A program logic for bytecode,”
in Proc. Bytecode05. Elsevier, 2005, pp. 255–273.

[10] Coq Development Team, “The Coq proof assistant reference
manual,” The Coq release v8.1, 2006.

[11] J. C. Reynolds, “Separation logic: A logic for shared mutable
data structures,” inProc. LICS’02. IEEE Computer Society,
Jul. 2002, pp. 55–74.

[12] C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Communications of the ACM, vol. 26, no. 1, pp. 53–56,
Oct. 1969.

[13] Y. Dong, S. Wang, L. Zhang, and P. Yang, “Modular certi-
fication of low-level intermediate representation programs,”
Tsinghua University, Beijing, China, Tech. Rep., Sep. 2008,
http://soft.cs.tsinghua.edu.cn/∼dongyuan/verify.

[14] A. McCreight, Z. Shao, C. Lin, and L. Li, “A general frame-
work for certifying garbage collectors and their mutators,” in
Proc. PLDI’07. ACM Press, June 2007, pp. 468–479.

[15] G. Barthe and C. Kunz, “Certificate translation in abstract
interpretation,” inProc. ESOP’08, ser. LNCS. Springer-
Verlag, 2008.

[16] A. W. Appel and S. Blazy, “Separation logic for small-step c
minor,” in TPHOLs’07. Springer-Verlag, 2007.

[17] L. Burdy and M. Pavlova, “Java bytecode specification and
verification,” in Proc. SAC06. ACM Press, 2006.

[18] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and
A. Momigliano, “A program logic for resource verification,”
in Proc. TPHOLs’04. Springer-Verlag, 2004.

