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representation (IR) programs is one of the key steps of . . . { (prs gw)}.
. O . 4 lit 0O ;load imMmm 0 16 ret ;fact return

proof-transforming compilation. The major challenges are ! o

. 5 opr 9 : n#0? :main caller
the complexity of abstract control stacks and the lack of . 16 -1 ud
control flow information due to their flat nature. To tackle ~ © JP¢ 16 ;loop judge -{(pi7, gi7)}
these challenges, we present in this paper a novel Hoare-style 7/ lod 1 4 l'oad r 17 1nt 6 stack frame
logic framework for modular certification of p-machine style” 8 lod 15 ; load n 18 lit 1 1 load inmm 1
bytecode as IR programs. This logic can fully support abstract 9 OPr 4 ;r*n 19 sto 0 4 ;r=1
control stacks and unstructured control flows for modular ~ 10 sto 1 4 ;save r 20 lit 5 :load inms5
certification of IR programs involving while loops, procedure 1lod 15 3 l'oad n 21 sto 05 1 n=5
call/return, recursive procedures, and even nested proceduse 2 lit 1 load imm1 22 cal 0 2 ;call fact
It applies Foundational Proof-Carrying Code (FPCC) concepts 13 opr 3 ;n-1 -{(p23, g23)}
to IR level. This system is expressive and fully mechanized. We 14 sto 1 5 ;save n 23 ret ;main return

prove its soundness and demonstrate its power by certifying Figure 1. Nested Procedure Example
the implementation of some IR programs in the Coq proof
assistant. This work not only provides a solid theoretical

foundation for reasoning about IR programs, but also makes | |anguage elegant and expressive. But the stack access
an important advance toward building proof-transforming

compilation environment in which certified IR code with proofs becpmes far m0|fe_ complicated. Our P-code machine has
can be compiled to machine checkable proof-carrying low-level @ single stack mixing both data and return addresses. So

assembly code. data store instructions can overwrite return addresses and
Keywords-proof-carrying code; modular certification; nested f[hus mess with control-stack Invariants. Almost al! the

procedure; intermediate representation program; instructions can access the stack, while p-code machine has
no stack protection mechanics. Correct implementation of

I. INTRODUCTION these constructs is of utmost importance to the safety and

Proof-transforming compilation transforms a proof of areliability of any IR programs.
high-level program into a proof of its low-level compiled A complex IR program which involves recursive nested
form as the program is being compiled it is a feasibleProcedure is shown in Figure 1. Let's omit the contents in
approach to build large scale trustworthy program. Althoug the shadow box. It is compiled from the Pascal like code in
lots of program logic for high-level language have beenFigure 2. During calling functioifact, instructioncal 0 2
proposed in last forty years [1]’ [2], the proved propertieson label22 saves its return pOinter on stack, then Updates
cannot be preserved during traditional compilation. Maehi Stack frame and stack pointer, and jumps to functieat
level programs can be certified with proper logic systemsn label2. Whenfact returns, the control jumps back to
[3], [4], [5]. However, the code of any non-trivial programs label 23, where fact restores return pointer, stack frame
of these logic are really tedious to carry out by hand. and stack pointers, then jumps back to its caller’s code.

Modular certification of intermediate representation (IR) To certify a program like this, the major challenge is to
programs is the key of proof-transforming compilation. As aformalize and capture the invariant of the nested procedure
well defined IR, bytecode for stack-based machine is saitablstack access of callee. Although there have been some
to serve as a mid-level language for a proof-transforminggefforts [7], [8], [9] on building logic systems for bytecode
compiler. A subset of Niklaus Wirth’s p-machine style programs, none of them can verify this program because of
bytecode (P-Code) [6] is used in this paper. the lack of nested procedure control stack support.

To handle modern language with nested procedure like Our Contributions. This paper presents a Hoare-style
Pascal, GNU C extension and FORTRAN-90, our IR sup-ogic framework NCBP (Certifying Bytecode Programs
ports nested procedure. This interesting feature makes owith Nested Procedures) for modular certification of IR



1 var r, n; | 11 begl n Local Variable ]
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10 end; D[1] ] D[] - —— = ——1
D[0] main D[0] main

Figure 2. Source Code of Nested Procedure
Figure 3. Stack and Display of PCM

programs with all kinds of stack-based control abstrastion

including while loops, procedure call/return, recursive-p Our IR supports nested procedures, so the stack access

cedures, and even nested procedures. Our logic suppddecomes far more complicated. An efficient method using an

modular certification so the callee can be certified withoutauxiliary display array is adapted in our machine to handle

knowing where it will return. This logic applies Foundatadn non-local and cross-procedure access.

P_roof-Carrymg Code (FPCC) concepts to IR programs. W?A. Stack and Display for Nested Procedure

give the complete soundness proof and a full certification o

several examples in the Coq proof assistant [10]. In Figure 2, the only function at nesting depth 0 is
This work not only provides a foundation for reasoning the outermost procedurepain. Within main, we declare

about IR programs for stack-based machine, but also makd¥oceduresfact at nesting depth 1 which does factorial

an important step toward proof-transforming compilation.cOmputation. The code suggests that the outer procedure

This paper makes the following contributions: calls fact and fact accesses itself recursively.

« As far as we know, our work presents the first program PCM has 3 registers — a program counter, which
logic facility for certifying the partial correctness of IR points at the current instruction in the code heap, a base
programs involving complex stack operations such agegisterr,, which marks the beginning of the active stack
non-local access of recursive nested procedure. frame, and a top-of-stack register (or stack pointeryhich

« Using the “producer/consumer” model, we formalize points to the top of the stack. To simplify the presentation,
the invariant of the stack-based procedure call/returrwe useb andt to represent values contained in the register
control abstraction in a general way to describe callerss andr;.
state transition from function call point to the return Stack Frame.PCM has only one shared stack which
point. As an important advantage, it can be usedorovides access links and return address, local variadhes,
as a general framework for other kinds of functionthe arguments to local instructions. Stack frames is shown
call/return with proper instances of calling convention.in Figure 3(a). There are four elements in a stack frame: a

« To our best knowledge, our logic framework is also saved display for current nesting depitnd], a dynamic
the first to apply FPCC concepts which is powerful for link dI which points to the frame base of caller procedure,
machine code certification to a common IR language@ return addrese, and current nesting deptf.

Our experience demonstrates that it should be feasible The procedure call is issued with instructiaral | f

to build a pervasive Hoare-like logic framework for where | specifies the difference in nesting depths &nd
proof-transforming compilation from IR to machine points to the target address. It works as follows: Firsts thi
code. instruction reserves the first four cells of the above stack

The rest of this paper is organized as follows: we first for-frame, and sets current nesting depth saved displayd,

malize a stack-based virtual machine and give its operaltion dynamic link dl, then saves the return addresspas+ 1.
semantics (Sec II). Then we present a generic Hoare-styl€hen, it sets register, to current stack frame base. After
logic framework NCBP system for certifying recursive that, it updates current displdy[nd] to current stack frame
nested procedure and show how to certify IR programs irbaseb. Finally it jumps to the callee procedure’s addréss
the framework (Sec Il and IV). Finally we discuss the A procedure always begins with the instructibiit w to
implementation with Coq proof assistant tools and relatedset register; to t + w. Sow essentially specifies the space
research work, and then draw a conclusion. reserved for locals (the number of parameters plus 4). When
procedure returns, the instructieet restores current saved

Il. FORMAL DEFINITION OF THE ABSTRACTMACHINE  igplay D[nd] from stack frame taD, recovers its return

We use P-machine style bytecode intermediate represemddress and stack pointer, then jumps back to the caller’s

tation to show the capability of our method. P-code is acode.

popular facility for language implementation and compiler Display. Display consists of one pointer for each nesting
construction. It runs on a stack-based abstract machinelepth. At all times,D[i] points to the highest activation
PCM (P-Code Machine). record on the stack for any procedure at nesting depth
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Figure 4. Definition of An IR Machine cal | f (K{t«»]D)(nd —14+1),(t+1)~b,
) , (t+2)~(pc+1),(t+3)~(nd =1+ 1)},
Clf 2 { ¢ c=C(f)andc = jmp ', or ret D{(nd — | + 1)~ t}, R{r,~>t})
;T o =C(f) andl = C[f+1] ret (K, D{nd~K(b))}, R{ri~b, ry~dl})
A b if r=a jmp f  |(K,D, R)
(F{a~b})(z) = F(z) otherwise. NextPCics) pc pc’ )/vhereS = (K,D,R)
Figure 5. Definition of Representations [ fe= | then pc = |
jpc f fif K(t) = 0; pc+ 1 others
cal | f f
In Figure 3(c), we see the displd@y, with D[0] holding a ret K(b +2)
pointer to the activation record fanain, the highest (and jmp f f
only) activation record for a function at nesting depth O. petl

=C(pc) NextSicp)SS  NextPCgs) pc pc

Also, D[1] holds a pointer to the activation record ffarct, —
the highest record at depth 1. From the saved display value o &8,pe) s (C. 8 pe)

. igure 7. operational semantics B1C' M
in the stack frame of proceduyect, we also can keep track

of all the former highest display records at nesting depth 1.
of states by executing with program counteipc; while

(PO)

B. Machine Specialization NextPC . s, shows howpc changes aftee is executed with
In Figure 4, we show our machine in a formal way. TheK, D andR.
whole machine configuration is called a “WorldW(), which The instruction set captures the most basic and common

consists of a read-only code hed)(an updatable stat€), = PCM, which is similar to JAVA bytecode or .NET CIL.

and an program countesd). The code heap is a finite partial Semantics of most instructions are straightforward.

mapping from code labels)(to instruction sequenced)( The execution of programs is modeled as a small-step

The stateS contains a stackK), a stack frame displayl)  transition from one world to anothéfy — W’ is made by

and a register file§). The program countepc points to  executing the instruction pointed to BY.pc.

the current command i©. We also define the instruction 1. T HE PROGRAM LOGIC FOR PC'M

sequencd as a basic code blocke., a list of sequential '

instructions ending with jump or return commands. NCBP, our new program logic for certifying IR pro-
We use the dot notation to represent a component in 8rams, follows the invariant-based proof technique: we de-

tuple, e.g.,S.K means the stack in stafe More represen- fine a program invariant stronger than the safety property

tations are defined in Figure &[f] extracts an instruction We are interested in. The program invariant guarantees that

sequence starting fromin C. Representatiod{a ~» b} is the program can execute one step, while the instructiors rule

function updating, and that F is any function. guarantee that the invariant still holds in the new program
It should be noticed that, in addition to normal push andstate. In this way, we know the program will never get stuck

pop operations, the instructions such as “lod” and “stounless hardware problem.

could do random access to the stack, So the stécis

modeled as a partial mapping instead of a list. Some reglster

and stack related notations are defined in Figure 6.

Specification Language

To specify a program with a code he@pthe programmer
should insert specifications at the start points of instonct
C. Operational Semantics sequences. We use the mechanizedta-logic which is

In Figure 7, we also define the operational semanticdmplemented in the Coq proof assistant as our specification
of each instruction in terms of the machine configurationl@nguage. This logic corresponds to a higher-order préglica

transitions. The relatiorNextS . ,c; shows the transition logic with inductive definitions. As shown in Figure 8, the
specificatiors is a pair(p, g). The assertiop is a predicate

t 2 R(ry) b £ R(r) sd £ K(b) over program stat8, while guaranteg is a predicate over
di£2Kb+1) raz2Kb+2) nd2Kb+3) two program states. As we can see, MetS . ., relation

Figure 6. Representations for Register/Stack defined in Figure 7 is a special form gfwhich is over the



(Pred p € State— Prop
(Guarante¢ g € State— State— Prop

(Well-formed World)

(Speg s (p.g)
(CdHpSper U = {(f1,s1),...,(fn,sn)}
(KPred) k € Stack— Prop

Specification Constructs fofC B P

Figure 8.

two adjacent states. We ugeto specify the pre-condition
over state, and usg to specify the behavior from the
specified program point tourrent function return point.
Specification¥ for code heapC associates code labels
f with corresponding. Multiple s may be associated with

UEC:U VCU  Whk{s}pc: Clpc] {s}V¥'S
U +{s} (C,S, pc)
(wLD)
(Well-formed Code Heap)
forall (f,s) e ¥': W kH{s}f: C[f]
V= C:v! (coHP)
Uy = Cr:0) Uy Co: U5 Ci#Co
(LINK)

U, UWsy - Cy U(CQ:\I/&U‘IIIQ

(Well-formed I nstr. Sequence)

the saméef, just as a function may have multiple specified
interfaces. We use the predicdteto specify the stack. To

enforce the stack partition between different functions, w
encode Separation Logic connectors in our specification lan

¢t ¢ {jpe, cal} U H{(p",g")}pct+1:1

p=2g (prg)=p" (po(gog’)) =¢g (sEQ)
U H{(p,g)}pc: ;1

(f', (p',g) e UH{(p" g")}pct+1: I

(P> gper) =P (Po(gperog)) =g

(p > gjper) = P’ (PO (gjperog”)) =g PO

guage (which is also our meta-logic). We also use standard
separation logic primitives [11] as assertion operators.

(pc+1, (p”,8")) € ¥

U H{(p,g)}pc: jpcf;l
U ={(p",g")}pct+1: I

(P> gea1) =P (P> gru) =P’ (Po(grmog’)) =g
B. Inference Rules f', (p',g) e grun = ((8ca1 0 &) O Eret)
The inference rules are defined as following judgments: U H{(p,g)}pc: cal | ;1 (cAL)
Uk {s}W  (well-formed world) (PO gret) = & (RET)
U C: v (well-formed code heap) U H{(p.g)}pc: ret
Uk {s}I (well-formed instruction sequence) (f,(P.g)eT (P>gm) =P (Polgmog)) =g

The program logic inference rules are shown in Figure 9.
Program InvariantsThewLp rule formulates the program
invariant enforced by our program logic:
The code heapt is well-formed following thecpHp
rule.
The imported interfacel is a subset of the exported
interface ¥’, thereforeC is self-contained and each
imported specification has been certified.
Currentpc has a specification in W, thus the current
instruction sequenc€[pc| is well-formed withs.
Given the exportedl’, current state§ satisfies thes.
Code Heap ModulesOur logic supportseparate certi-

p=g2VvS.pS— 3Y,gSY;
p=p 2VS.pS—pS;
g=g 2VS,S.gSS — g'Ss’;

U H{(p,g)}pc: jmp f’

Figure 9. NCBP Inference Rules
p>g £ AS.3S0, pSo A gS0S
VANAN " / U rQlrQl’
gog = AS,S".35",gSS" A g'S'S
pog £ )S,S .pS A gSS
Figure 10. Connectors fqy andg

(ampP)

for the current instruction should be found. At the same
time, the remaining instruction sequence is well-formethwi
intermediate specificatiofp”, g”);

We useg, to represent the state transition made by the

fication of the program modules. Modules are small codeinstruction:, which is defined in Figure 11 and Figure 7.

heaps which contain at least one code block. The specSinceNextS does not depend on the current program counter
ification of a module contains specifications of both thefor these instructions “” is used to represent arbitrape.
code blocks in the current module and the external code The rules use the definitions in Figure 10. The predicate
blocks in the callee’s module. In thepHp rule, ¥ contains  p 1> g, specifies the state resulting from the state transition
specifications for external code (called by local moduleg,, knowing the initial state satisfigs. It is the strongest
C), while ¥’ contains specifications for code blocks in the post condition afteg,. The composition of two transitions
moduleC for other modules. The well-formedness of eachg andg’ is represented aso g’, andp o g refinesg with the
individual module is given via thecorp rule. All non-  knowledge that the initial state satisfips

intersecting well-formed modules can be linked via the The first premis@ = g, in the inference rulseq means

rule into a well-formed global code heap. . that the state transitiog, would not get stuck as long as
Sequential Instructiond.ike traditional Hoare-logic [12],  the starting state satisfigs The second one means if the
our logic also uses the pre- and post-condition as specurrent state satisfigs after state transitiop,, the new state

ifications for programs. Theseq rule is a schemafor  satisfiesp’. The last one requires the compositiongpfand
instruction sequences starting with an instructigncannot  g” fulfilling g, knowing the current state satisfips

be conditional jump or function call instructions). It says
is safe to execute the instruction sequeficgtarting with

A / U
. . ; . gijper = AS,S".NextS(jpe, ySS (whereS.K(r;) = 0)
. at the code Ia'b'ebc, given thg |mport§d mterfaqg |ﬂ{ g 2 2SS .NextS(je ) S (whereS.K(r,) # 0)
and a pre-condition(p, g). An intermediate specification N N

AS, S’.NextS(q ) Ss
Figure 11.

(for all otherc)

(p”,g") with respect to which serves as the post-condition Local State Transitions



;procedure bar

{( P foo (p. 8)
~1Pp: &g
Function Call and ReturnFigure 12(a) illustrates the 5 int 4 ;stack frame
meaning of the specificatiofp, g) for the procedurefoo. ~{(pes 80)} Ay g o (P5 85)
A pre-condition for an instruction sequence contains a 3 ret ;return . g B|PaT
predicatep specifying the current state, andgaaranteeg sprecrdurE Too <
describing the relation between the current state and the st ~{(»: &3 D i I &
at the return point of the current procedure. The guarantee? 17t 4 istack frame gi{ ret C
g may cover multiple instruction sequences. ~Ups, £4)) , D
. . 5 cal 1 2 ;call bar gsSs
Figure 12(b) shows a procedure calitar (pointB) from o, &)} &b
. - D> SD
foo at p0|_ntA (label pc = 5) Wlth the re_turn address 0 return lorr 0 0} g
pc + 1 (point D). The specification ofbar is (ps,gs)- (@) (b)

Specifications at andD are(pa,ga) and (pp, gp), Wwhere
g4 governs the code segmetvE andgp governsD-E.
To prove the well-formedness of program calling behav-

ior, the following conditions should be satisfied: ) )
« the state should satisfy the pre-condition of cabee, The actual depth of the control stack is not considered
¥S, 35 .pa SAger SS — p5 §; in this definition. We do not specify the other features

. afterbar returns.foo resumes frond of the stack in the invariant, which makes our logic very

Figure 12. NCBP Procedure Call/Return Model

vS,S”.S,S*.pa S general and flexible to use. As long as properly specified,

— gea1SS’ — gBS'S" — gretS*S” — pp S5 the callee can update any other parts of the stack. The

« the specification irbar for A-E should be satisfied, programmer should prove that this invariant holds at every
VS,8",8",5,8"pa S — g1 S &' step of program execution.

— gB Sl S* — gret S* SH — gD S// S/// — g S Sl”;
Then we can define guarantgg,,for callee
gran 2 2S,S”.35, 38", 8ca1 SS' Agn S’ S* A gret ST S,
Thus, we can rewrite last two premises as:

Other InstructionsThe execution ofjpc may either fall
through or jump to the target code label, depending on
whether the condition holds. So in thec rule, we use

VS,S".pa S — gra SS” — pp S gjpcr and gjpcr tO represent identity transitions with extra
and knowledge about the stadk. We also need to know that
vS,S”",S" paS — g SS” —gp S’ S —gS§”. p contains the ownership of the target stack cell. A direct

. o . jump is safe (rulesmp) if the current assertion can imply the

One of the major contributions of our work is the for- agsertion of the target code label as specified irt should
mulation of g, for the callee procedure which hides the pa viewed as a specialization ofc
complexity of the stack and display. Above conditions are goundness oV CBP. Based on the progress and preser-
enforced by theeaL rule shown in Figure 9. It can be seen yation lemmas, the soundness BCBP guarantees that
that gtun describes the states transition from_the functionype complete system never gets stuck as long as the initial
call point to the return point. It should be noticed that Westate satisfies the program invariant that is defined by the
do not require a particular return value but only requiré tha,y, , ryle, Furthermore, the invariant will be always held
the stack cogtaln a code pointer specified in logaat the  qyring execution, from which we can derive rich properties
return stateS”, which is provable based on the knowledge ¢ programs. The soundness of the program logic is proved
of p andgsun. . _ _ - following the syntactic approach in Coq proof assistani.[13

ThereT rule simply requires that the function has finished | emma 3.1 (Progress)If W +{s}W, then there exists
its guaranteed transition at this point. So a state tramsiti yy/ gych thafW —s W',

gret Should satisfy the remaining behavior of the callee | gmma 3.2 (Preservation)lf ¥ +{s}W, andW — W',
functiong. In this rule, we do not need to know any infor- then there exists’, ¥ - {s' W'
mation about the return address. So it can be used to supportTheorem 3.3 (Soundness oNC'BP) If W - {s}W, then

modular certification of any callee function separately. for all natural numbem, there exists a prograV’ such
Stack Invariant.From the procedure call premises, the tpat vy, nyy’.

“well-formed control stack with depth” can be defined as:

WFST(0,g,S, ) & _39. eSS IV. RECURSIVENESTEDPROCEDUREEXAMPLES

WFST(n,g,S,¥) 2VvS'.gSS — S .K(b+2) € dom(T) In this section we certify a recursive nested factorial
Ap' S AWFST(n —1,¢g',S',¥) procedure implemented in IR to show haWwC B P can be
where(p’,g') = ¥(S"K(b +2)). used to support non-local and cross procedure access.

When the stack has depth we are in the outermost .
function which has no return code pointer. Thus, there exisf- Callee of Recursive Procedure
no S’ at which the function can return. Get Instruction Sequence$he source code and the IR
The stack invariant is defined as that, at each programprogram with its specifications foPCM are shown in
point with specification(p,g), the program stat& must Figure 1 (Section ).
satisfy p and there exists a well-formed control stackSin
{(p,g)} ¥'S £ pSAINWFST(n,g,S, V).



True £ )\S.True pi7 = validK(b, 7+ 4% 6) A (t = b)
validK(sp,n) 2Vl € {0...n}.K(sp +1 ) g7 £ Kid(b) A Frmid(b,b') ADId A (t = t' — 6) A (b = b)
p2s = validK(b,7+4%5) A (t = b+ 6) A (K(b+4) = 5!)
NoG £ \S.)\S' .False AK(b+5) =0)
Did 2l €{0...nd}.D(I)=D'(1) g23 2 Kid(b) A Frmid(b, b’) A Did A Rid
Kid(l s) 2yl €{DO)...1s —1}K(1)=K'() py 27 g 27
Frmid(I s,I s’) 2Vl €{0...3} K(Is+1)=K'(Is’"+1) Figure 15. Specifications of Caller
Rid 2 R(rp) = R'(rp) AR(rs) = R'(r)
. Figure 13.  Specification Macros fov C 5P From p», we know that the values of andr, are equal,
p2 = validK(b,1+ 4 (K(bc +5) + 1)) A (t = b) there is enough stack space for this recursive procedure to

AK(be +4) >=1) A (K(be +5) € {0...5})
go = (t=t —4) A (b=b") AFrmid(b, b) A Did A Kid(bc)
AFrmid(be, be) A (K (be +4) = K(be + 4) * (K(be + 5))!)
pic = validK(b,1+ 4% (K(bc+5)+ 1)) A (t =b+4)

run, and the values of variables and n which stored in
caller’s stack are inside the proper scope. The guarantee
specifies the behavior of the function:

A(K(be + 4) = 51) A (K(be + 5) = 0) « only the caller stack and local stack are updated;
g16 2 Rid A Frmid(b, b) A Did A Kid(be) A Frmid(be, bc) « the stack frames of caller and callee are not updated,
A(K (be +4) = K(be + 4) * (K(be 4+ 5))!) « the display is not updated;
whereb. 2 D(nd — 1), is the stack base point of caller. « the registerr, is not updated while = t' — 4 which
Figure 14. Specifications of Callee reserves stack cells for local stack frame; and,

« the non-local variables and n which are saved in
caller’s stack fulfill the loop invariant;

(p16,816) IS the specification of the rest of this procedure.

he pre-conditiorp;g says that the relationship between the

alues ofr; andr, is (t = b + 4), the stack space is still

. . _ available and, the results which store in caller's stacktmus
be seen that there are two instruction sequences in call§g, . _ =) ondn — 0. The guaranteg;s looks the same as

program. Instructions with label from 2 to 15 form the first , except the relation about the value ofwhich reflects

sequence. The second one is formed by the return instructiqgﬂe state transition of stack reserving instructian €04,

with Igbel 16',, . . Certify and Link Them Togetheffo check the well-
Write Specification for_ Instruction _S_eqqence‘ﬁhen the  tormedness of an instruction sequence beginning with

programmer _need_s. _to give the specificatibrof the code 5 programmer’s task includes applying the appropriate in-

heap_, _Wh'_Ch IS a fmltg mapping from code lab&i® code  forence rules and finding intermediate assertions such as

specifications which is a pair(p, g). (Sp/, g'), which serves both as the post-condition f@nd as

_ NOBP specifications for the code heap are embeddege pre-condition for the remaining instruction sequence.

in the code, enclosed by{} in shadow box, see Figure 1 after that, a programmer is also required to establish the

(Section ). Figure 13 shows definitions of macros usedye||-formedness of each individual module via therp

in the code specificationszalidK(sp,n) means that the je Two non-intersecting well-formed code heaps can then

n +1 stack cells those with addresses fr@p 10 Sp + 7 g jinked together via theink rule. Thewto rule links all

are valid and can be used in current functitid means 4o heaps into one single well-formed global one.

all the accessible display elements Snare not changed. g, nnort Modular CertificationAll the code specifications

Kid(I s) means all the stack cells /from the bottom of g sed inNCBP rules are thdocal specifications for the

outermost pr/ocedure tbs in S and §' are totally equal. ¢ \rrent module. ThusNC'BP supports modular reasoning

Frmid(l s, 1 s’) means the stack frame cells thos/e With apout function callireturn in the sense that caller anceeall

addresses froms to s + 3 are equal to those frois™ 10 can pe in different modules and be certified separately.

I s’ + 3 respectivelyRid means all the registerexceptpc When specifying the callee procedure, we do not need any

in S are preserved. knowledge about the return address in its pre-condition.

Following the inference rules, the code specificationsrhe ret rule for the instruction fet” does not have any
should be given for these points: the head of an instructioR qnstraint on return value either.

sequence, the target labels of function call instruciian

and jump instructionsj@p and jpc), and the function call B. Caller of Factorial Procedure

return address which is just after call instructiostl. The caller and its specifications for the recursive nested
Figure 14 shows the specifications of this example. Tdfactorial example are shown in Figure 1 (Section ).

simplify our presentation, we present the predicatén Figure 15 gives the specification definition of this example.

the form of a proposition with free variables referring to  This procedure just initializes the variablesandn, and

components of the staté Also, we usek as shorthand for then calls proceduréact. The specification at the entry

the propositiork K when there is no confusion. point is (p17,g17). The pre-conditiorp;; simply says that
The specification of this procedure is given @s,g2).  the values of; andr, are equal and there is enough stack

Finding the instruction sequence is the first step to certify
a program. From the definition in Figure 4, we know thatT
an instruction sequence is a set of instructions ending wit,
unconditional jumpjmp or function returnret. Thus, it can



space for this procedure to run. The guaranteespecifies | Component Name | Number of lines|

the behavior of the caller procedure: Basic Utility Definitions & Lemmas 2,354
« the stack cells except the local stack are not updated{ Nachine Definition & Lemmas 275
« the callee stack frame is not updated; Operational Semantics & Lemmas 854
« the display is not updated; and, NCBP-PCM Rules & Lemmas 223
« the register;, are not updated while = r,’ — 6 which NCBP-PCM & Soundness 966

reserves cells for local stack frame and local variables. pcy stack Related Lemmas 2241

The specification of the return point i23, g23). P23 IR Examples Source Code 164

means that there are still enough local stack space, thecCallee Fact Spec. & Proof 1121

relation between the values ef andr, ist = b + 6, and Caller Main Spec. & Proof 522

local variablesr andn are5! and0. The guarantegss also ’ Total ‘ 8720 ‘

specifies that the non-local stack, the local stack frame, th

display and the register file are all the same. Figure 16. The Verified Package in Coq

From thecaL rule, we know thatp-, g2 ), the specification
of the callee’s entry point should be added here to proveo translate certified IR programs to assembly codes with
caller procedure. The specificatigp,, g») in Figure 14 can  proofs. This idea is similar to Barthe’s certificate tratista
be used here. Furthermore, the specification of proceduregompiler [15], but we use CiC, the underlying higher-order
entry point defines function interface. Caller can use anyogic in Coq, as our specification language. We plan to
callees which share the same interface. develop a prototype compiler to translate our proof into the
proof for machine code.
Our logic system does not support concurrency yet. It
Implementation with CoqThe program logic presented s actually an easy work to extend the machine to support
in this paper has been applied to IR programs for theconcurrency. But it is difficult to define a simple logic syste
stack-based virtual machineC'M which supports nested to modularly certify concurrent IR programs. We will try it
procedure non-local access with display. in the near future. Another important and useful extensson i
We have formalized>C'M, its operational semantics, and the support of the object-oriented features such as objects

the program logic in the Coq proof assistant. The syntaxeferences, methods, and inheritance.
of the virtual machine is encoded in Coq using inductive

definitions. Operational semantics d*CM and all the VI. RELATED WORK AND CONCLUSION

inference rules ofVC B P are defined as inductive relations.  Logic for Intermediate Representation and Bytecdtte-
The soundness of the framework itself is formalized andgram logic for intermediate representation is the essen-
proved in Coq following the syntactic approach. The prooftial component of the certified compilers and the proof-
is also formalized and implemented in Coq and is machinetransforming compilers.

checkable. These examples are implemented directly in IR Appel and Blazy [16] designed a Separation Logic system
and are hard to certify using other existing approaches.-Marfor Cminor, the IR of the certified CompCert compiler. The
ually optimized IR code or code generated by optimizingCminor programs that are proved in Separation Logic can
compilers can also be certified using our systems. be compiled by the certified compiler.

The implementation includes around 300 lines of Coq Bytecode can be used as the IR of a modern compiler.
encoding of PCM including stack and display definition, Bytecode Modeling Language (BML) [17] focuses on writ-
850 lines encoding ofPC M operational semantics, 230 ing understandable specifications for bytecode. It allows
lines encoding ofVC' B P rules, and 950 lines of Coq tactics the application developer to specify the behaviour of an
for the soundness proof. We have written several hundredpplication in the form of annotations at the level of the
lines of Coq tactics to certify practical examples, includ- bytecode. In particular, JAVA source code specifications ca
ing procedure call/return, and recursive nested procedurde compiled into BML specifications.

The implementation also includes more than 2300 lines of Some others are focus on the development of the sound
reusable basic facilities, including lemmas and tactias fo proof system. Quigley [7] defined a programming logic for
partial mappings and Separation Logic assertions. bytecode programs within Isabelle that allows the proof

According to our experience, the size of the proof scriptsof bytecode programs containing loops. MRG project [18]
in terms of the number of lines of Coq tactics, is hugepresented the resource-aware operational semantics of an
compared with the size of the IR code. However, as observedbstract fragment of JVM Language (named Grail), the
by [14], the length of proof is probably a poor metric of program logic, and the proof. Bannwart anduér [9]
complexity because of the redundancy of the proof. presented a program logic for a bytecode language similar to

Extensions and Future Workhe most important work is  Java bytecode and the .NET CIL that supports lots of object-
building a proof-transforming compiler based on our logic oriented features such as objects, methods, and inhegitanc

V. IMPLEMENTATION AND FURTHER EXTENSIONS



Benton [8] proposed a typed, compositional logic for a stack [3] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni, “Mod-

based abstract machine to certify bytecode programs which
are written in an imperative subset of .NET CIL. But none
of these systems can be used to verify a program which

involves recursive nested procedure.

There have been some efforts [3], [4], [5] on building logic
system for low-level (assembly) programs. These resudts ar
very useful for us to transform our IR code and the proof

into low-level codes and their proof.

Conclusion.This paper presents a Hoare-style framework
for modular specifying and certifying IR programs with
complex stack-based control abstractions and unstrutture
control flow, including while loop, procedure call/return,
recursive procedure, and even nested procedure. This vir-
tual machine features nested procedure with variables fromy
external scopes via a display. For each control abstraction
we have formalized its invariants and shown how to certify
its implementation. Using the producer/consumer model,

: 8]
we studied the stack-based procedure call/return control
abstractions. In a natural and general way, we formalize it
as the general formula to describe caller's state tramsitio
from function call point to return point. It can be used as [9]
a general framework for other machines and other calling

convention with proper instances of guarangefer call and
return instructions.

This logic system is fully mechanized in the Coq proof
assistant. It provides a foundation for reasoning about IR11]
programs for stack-based virtual machine and makes a solid
advance toward building a proof-transforming compilation
environment. We believe this work may serve as a solid;,
theoretical foundation to understand and reason about the

IR programs which run on stack-based virtual machine.
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